

AP* Chemistry COVALENT BONDING: ORBITALS

The localized electron model views a molecule as a collection of atoms bound together by sharing electrons between their atomic orbitals. The arrangement of valence electrons is represented by the Lewis structure and the molecular geometry can be predicted from the VSEPR model. There are 2 problems with this.

- 1) Using the 2p and the 2s orbitals from carbon in methane would result in 2 different types of bonds when they overlap with the 1s from Hydrogen. [three 2p/1s bonds and one 2s/2p bond] However, experiments show that methane has FOUR IDENTICAL bonds. Uh, oh....we need to modify the model!
- 2) Since the 3*p* orbitals occupy the *x*, *y* and *z*-axes, you would expect those overlaps of *atomic* orbitals to be at bond angles of 90°. Darn those experiments! All 4 angles are 109.5° .

It's not that the localized electron model is wrong; it's just that carbon adopts a *set* of orbitals rather than its "native" 2*s* & 2*p*. THIS IS WHY THESE ARE MODELS/THEORIES rather than LAWS!!

VALENCE BOND THEORY—an extension of the LE model—it's all about hybridization!

Two atoms form a bond when *both* of the following conditions occur:

- 1. There is orbital overlap between two atoms.
- 2. A maximum of two electrons, of opposite spin, can be present in the overlapping orbitals.
- Because of orbital overlap, the *pair* of electrons is found within a region influenced by both nuclei. Both electrons are attracted to both atomic nuclei and this leads to bonding.
- As the extent of overlap increases, the strength of the bond increases. The electronic energy drops as the atoms approach each other but, increases when they become too close. This means there is an optimum distance, the observed bond distance, at which the total energy is at a minimum.
- <u>sigma (σ) bond</u>--overlap of two *s* orbitals or an *s* and a *p* orbital or head-to-head *p* orbitals. Electron density of a sigma bond is greatest *along the axis* of the bond.
- **maximum overlap**: forms the strongest possible bond, two atoms are arranged to give the greatest possible orbital overlap. Tricky with *p* orbitals since they are directional.
- <u>hybrid orbitals</u>-- a blending of atomic orbitals to create orbitals of intermediate energy. Methane: all of the C–H bonds are 109.5° apart while *p* orbitals are only 90° apart. Pauling explained:

*AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. © 2008 by René McCormick. All rights reserved.

Ammonia also has sp^3 hybridization even though it has a lone pair.

I find it helpful to think of electron pairs as "sites" of electron density that can be occupied by *either* a lone pair or a shared pair. If there are 4 "sites" then 4 orbitals need to hybridize so use one *s* and three *p*'s to make FOUR equivalent orbitals named *sppp* or sp^3 orbitals . [1 $s + 3 p = 4 sp^3$ orbitals]

MULTIPLE BONDING—lowers the number of hybridizing orbitals since Unhybridized orbitals are necessary to form the pi bonds

<u>Pi</u> (π) **bonds**-come from the sideways overlap of *p* atomic orbitals; the region above and below the internuclear axis. *NEVER* occur **without** a sigma bond first!

- may form **only** if unhybridized *p* orbitals remain on the bonded atoms
- occur when sp or sp^2 hybridization is present on central atom NOT sp^3 hybridization.
- Carbon often does this with N, O, P, and S since they have *p* orbitals (remember CNOPS?)
- This is the formation of an sp^2 set of orbitals [3 orbitals formed, 3 sites, 3 letters!]. This molecule would contain a double bond like ethene. The molecule reserves a set of p's to form the π bond.

• This is the formation of an *sp* set of orbitals [2 orbitals formed, 2 sites, 2 letters!]. This molecule would contain a triple bond like ethyne or the double-double arrangement in carbon dioxide.

The molecule reserves TWO sets of UNhybridized p's to form the 2 π -bonds.

At right, is a picture of the 2 unhybridized p's on the C atom that is about to make a triple bond. The one labeled at the top is in the plane of this page, the other plain p is in a plane perpendicular to this page. (No typo—just appropriate use of homonyms; plain vs. plane!)

Look at the CO₂ Lewis diagram. The carbon has 2 sites of electron density, each occupied by a double bond, and is therefore *sp* [2 sites, 2 letters] hybridized while the oxygens have 3 sites [2 lone pairs and a double bond]. The oxygen's have sp^2 hybridization [3 sites, 3 letters].

This should help:

HYBRIDIZATION	# OF HYBRID ORBITALS	GEOMETRY	EXAMPLE
sp	2	Linear	
sp^2	3	Trigonal planar	
sp ³	4	Tetrahedral	
dsp^3	5	Trigonal bipyramidal	
d^2sp^3	6	Octahedral	

Check out Benzene

The sigma bond formations

Draw the Lewis structure for benzene:

The pi bond formations

tetrahedral, sp³ hybrid

Exercise 2 The Localized Electron Model II Describe the bonding in the N_2 molecule.

linear, sp hybrid

Exercise 3 The Localized Electron Model III Describe the bonding in the triiodide ion (I_3^{-}) .

trigonal bipyramidal arrangement, e- pair geometry, linear molecular geometry central iodine is dsp³ hybridized

Exercise 9 The Localized Electron Model IV How is the xenon atom in XeF₄ hybridized?

d²sp³ hybridized

Exercise 5The Localized Electron Model VFor each of the following molecules or ions, predict the hybridization of each atom, and describe the molecular structure.					
a. CO	b. BF ₄ ⁻	c. XeF_2			
		A: linear, B: totrohodrol a	sp hybridized		
		C: trigonal bipyra	midal e ⁻ pair, le dsp ³ , linear		

THE MOLECULAR ORBITAL MODEL

Though the molecular orbital model will not be covered on the AP exam, I feel that students should be exposed to a little of this theory for several reasons.

- 1. Electrons are not always localized as in the VSEPR theory; therefore resonance must be added and explained as best possible.
- 2. Molecules containing unpaired electrons are not easily dealt with using the localized model.
- 3. Magnetism is easily described for molecules using the MO theory. (Oxygen is paramagnetic which is unexplained by the localized electron model.)
- 4. Bond energies are not easily related using the localized model.

TERMS TO KNOW:

Bonding molecular orbital - an orbital lower in energy than the atomic orbitals from which it is composed.(favors formation of molecule)

<u>Antibonding molecular orbital</u> - an orbital *higher* in energy than the atomic orbitals from which it is composed. (favors separated atoms) represented by a * [The diagram at the top of the next page uses A for antibonding and B for bonding—I prefer the *, it has more personality!]

Bond order - the difference between the number of bonding electrons and the number of antibonding electrons divided by two. Indicates bond strength.

Homonuclear diatomic molecules - those composed of two *identical* atoms.

Heteronuclear diatomic molecules - those composed of two different atoms

<u>**Paramagnetism</u>** - causes the substance to be drawn into a magnetic field; associated with unpaired electrons. <u>**Diamagnetic**</u> - causes the substance to be repelled by the magnetic field; associated with paired electrons.</u>

General Energy Level Sequence for Filling Orbitals Using the MO Theory σ1s² σ1s²* σ2s² σ2s²* (π2p_x²π2p_y²)σ2p²(π2p_x²* π2p_y²*) σ2p²*

If we assume that the molecular orbitals can be constructed from the atomic orbitals, the quantum mechanical equations result in two molecular orbitals

$$MO_1 = 1s_A + 1s_B \quad \text{and} \\ MO_2 = 1s_A - 1s_B$$

Let's start simple. 2 Hydrogen atoms.

Since 4 electrons are involved, the first 2 get to be lazy and go to the low E state, the other 2 must occupy the higher energy state and thus cancel out the bond, therefore $He_2 DOES NOT EXIST!!$

Now **<u>bond order</u>** can be redefined in this theory:

Bond order = <u>number of bonding electrons</u> – <u>number of antibonding electrons</u>

2

If the bond order is zero \rightarrow no bond!

Shall we predict if Li₂ is possible? Li has its valence electrons in the 2s sublevel.

Yes! It may also exist. What is its bond order?

Can Be₂ exist?

Things get slightly more complicated when we leave Be and move to 2p...

General Energy Level Sequence for Filling Orbitals Using the MO Theory σ1s² σ1s²* σ2s² σ2s²* (π2p_x² π2p_y²)σ2p²(π2p_x²* π2p_y²*) σ2p²*

The filling order for p's is pi, pi, sigma all bonding, followed by pi, pi, sigma all antibonding.

PRINCIPLES APPLY!!

HUND'S RULE AND PAULI EXCULSION

Try to predict the configuration of B₂

One of the most useful parts of this model is its ability to accurately predict para- and diamagnetism as well as bond order.

This device is used to test the paramagnetism of homonuclear samples. When the electromagnet is on, a paramagnetic substance is drawn down into it and appears heavier on the balance.

 B_2 is paramagnetic! That means that the pi orbitals are of LOWER energy than the sigma's and Hund's rule demands that the 2 electrons fill the 2 bonding pi orbitals singly first before paring.

Will C₂ exist? Will it be para- or diamagnetic?

Exercise: Write the appropriate energy diagram using the MO theory for the nitrogen molecule. Find the bond order for the molecule and indicate whether this substance is paramagnetic or diamagnetic.

	B_2	C ₂	N_2	O_2	F ₂
σ_{2p}^{*}	S			$\sigma_{2_{p}}^{*}$ —	
π_{2p}^{*}				$\pi 2_p^* \stackrel{\uparrow}{\longrightarrow} \stackrel{\uparrow}{\longrightarrow}$	<u>_</u> †↓†↓
σ_{2p}			<u></u> †↓	$\pi 2_p \text{for } \pi 2_p$	_+↓+↓
π_{2p}	\rightarrow \rightarrow	$\stackrel{\uparrow \downarrow }{\longrightarrow} \stackrel{\uparrow \downarrow }{\longrightarrow}$	_+↓+↓	$\sigma 2_p \longrightarrow$	<u></u>
σ_{2s}^{*}	<u></u>	<u></u> †↓	<u></u> †↓	$\sigma 2_s^* \longrightarrow$	<u></u>
σ_{2s}	<u></u> †↓	<u></u> †↓	<u></u>	$\sigma 2_s \longrightarrow$	<u></u>
agnetism	Para– magnetic	Dia– magnetic	Dia– magnetic	Para– magnetic	Dia– magnetic
ond order	1	2	3	2	1
oserved nd ssociation ergy l/mol)	290	620	942	495	154
nd ngth m)	159	131	110	121	143
	σ_{2p}^{*} π_{2p}^{*} σ_{2p} π_{2p} σ_{2s}^{*} σ_{2s}^{*} σ_{2s} agnetism ond order oserved nd ssociation ergy //mol) oserved nd nd oserved nd nd nd nd nd nd nd nd nd n	B_{2} σ_{2p}^{*}	B_2 C_2 σ_{2p}^* — π_{2p}^* — σ_{2p} — σ_{2p} — π_{2p} + σ_{2x}^* ++ σ_{2x}^* ++ σ_{2x} ++ <td>$B_2$$C_2$$N_2$$\sigma_{2p}^*$$\pi_{2p}^*$$\sigma_{2p}$$\sigma_{2p}$$\pi_{2p}$+++$\pi_{2p}$+++$\sigma_{2s}^*$++++$\sigma_{2s}^*$++++$\sigma_{2s}$-++++agnetismPara- magneticDia- magneticand order123sserved nd ssociation ergy290620942sserved nd ggth m)159131110</td> <td>B2 C2 N2 O2 σ_{2p}^* σ_{2p}^* σ_{2p}^* σ_{2p}^* π_{2p}^* σ_{2p}^* σ_{2p}^* σ_{2p}^* π_{2p}^* σ_{2p}^* σ_{2s}^* σ_{2p}^* σ_{2p}^* σ_{2p}^* σ_{2s}^* σ_{2p}^* σ_{2p}^* σ_{2p}^* agnetism Para- Para- magnetic Para- magnetic Nagnetic Nagnetic Para- magnetic Nagnetic Nagnetic Nagnetic secreted Nagnetic Nagnetic Nagnetic</td>	B_2 C_2 N_2 σ_{2p}^* π_{2p}^* σ_{2p} σ_{2p} π_{2p} +++ π_{2p} +++ σ_{2s}^* ++++ σ_{2s}^* ++++ σ_{2s} -++++agnetismPara- magneticDia- magneticand order123sserved nd ssociation ergy290620942sserved nd ggth m)159131110	B2 C2 N2 O2 σ_{2p}^* σ_{2p}^* σ_{2p}^* σ_{2p}^* π_{2p}^* σ_{2p}^* σ_{2p}^* σ_{2p}^* π_{2p}^* σ_{2p}^* σ_{2s}^* σ_{2p}^* σ_{2p}^* σ_{2p}^* σ_{2s}^* σ_{2p}^* σ_{2p}^* σ_{2p}^* agnetism Para- Para- magnetic Para- magnetic Nagnetic Nagnetic Para- magnetic Nagnetic Nagnetic Nagnetic secreted Nagnetic Nagnetic Nagnetic

If you use the usual models to examine the paramagnetism of oxygen, you'd say it was diamagnetic. The truth is that it is paramagnetic. If you pour liquid oxygen into the space between the poles of a strong horseshoe magnet, it says there until it boils away in the warm room!

Exercise 6

For the species O_2 , O_2^+ , O_2^- , give the electron configuration and the bond order for each. Which has the strongest bond?

Exercise 7

Use the molecular orbital model to predict the bond order and magnetism of each of the following molecules. a) Ne_2

b) P₂

This model also works in heteronuclear molecules.

Exercise 8

Use the MO Model to predict the magnetism and bond order of the NO⁺ and CN⁻ ions.