## Titration Curve Practice Problems

1. From the graph at the right, determine
a. if the acids/bases are strong or weak
b. whether the acid or base was added from the buret
c. the volume required to reach the equivalence point
d. the pH at the equivalence point

e. the concentration of base $(\mathrm{BOH})$ used if this titration started with 50.0 mL of 0.050 M acid, HA.
2. From the graph at the right, determine
a. if the acids/bases are strong or weak
b. whether the acid or base was added from the buret
c. the volume required to reach the equivalence point
d. the pH of the equivalence point

e. the region where buffering occurs
f. the volume and pH at the half equivalence point
g. the $K_{a}$ of the acid used
h. the region where the [HA]:[A-] ratio has more [HA]
i. the region where the [HA]:[A-] ratio has more [A-]
j. the concentration of a base $(\mathrm{BOH})$ if this represents reaction with 60.0 mL of 0.050 M acid, HA.
k. the concentration of a base $\left(\mathrm{B}(\mathrm{OH})_{2}\right)$ if this represents reaction with 60.0 mL of 0.050 M acid, HA.
3. From the graph at the right, determine
a. if the acids/bases are strong or weak
b. whether the acid or base was added from the buret
c. the volume required to reach the equivalence point
d. the pH of the equivalence point
e. the region where buffering occurs

f. the volume and pH at the half equivalence point
g. the $K_{b}$ of the base used
h. the region where there is more base than conjugate acid ion.
i. the region where the [base]:[conj. acid ion] ratio has more [conj. acid ion]
j. the concentration of acid used if this represents the titration of 30 mL of 0.25 M base.
4. 25 mL of 0.10 M NaOH is titrated with 0.20 M HCl . Determine, a. if the acids/bases are strong or weak
b. if the acid:base is $1: 1$ or other
c. the initial pH before the titration begins
d. the volume required to reach the equivalence point
e. the identity of the major species present at the equivalence point

On the graph,
f. label the axes
g. sketch the curve
h. mark the equivalence point with an X
i. state the pH and volume at the equivalence point

|  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

5. 40.0 mL of 0.020 M sorbic acid, $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{2}$, is titrated with 0.040 M of sodium hydroxide to its equivalence point. ( $K_{a}$ of sorbic acid $=1.7 \times 10^{-5}$ )
Determine
a. if the acids/bases are strong or weak
b. if the acid:base is $1: 1$ or other
c. the initial pH before the titration begins
d. the volume of sodium hydroxide required to reach the equivalence point
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7 .

On the graph,
f. label the axes
g. sketch the curve
h. identify the portion of the curve where buffering occurs
i. Identify the region of the buffer portion where the is more weak acid than conjugate base ion
ii. Identify the region of the buffer portion where there is more conjugate base ion than weak acid
i. mark the half-equivalence point with an H and label
 the volume and pH
j. mark the equivalence point with an X and label the volume and approximate the pH
6. 20.0 mL of $0.030 M$ nitric acid is titrated with $0.040 M$ potassium hydroxide. Determine,
a. if the acids/bases are strong or weak
b. if the acid:base is $1: 1$ or other
c. the initial pH before the titration begins
d. the volume of KOH required to reach the equivalence point
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7

On the graph,
f. label the axes
g. sketch the curve
h. mark the equivalence point with an X
i. state the pH and volume at the equivalence point

7. 20.0 mL of 0.060 M solution of ammonia, $\mathrm{NH}_{3}$ is titrated with 0.060 M perchloric acid, $\mathrm{HClO}_{4} .\left(K_{b}\right.$ of ammonia is $1.8 \times 10^{-5}$ )
Determine
a. if the acids/bases are strong or weak
b. if the acid:base is $1: 1$ or other
c. the initial pH before the titration begins
d. the volume of perchloric acid required to reach the equivalence point
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7

On the graph,
f. label the axes
g. sketch the curve
k. identify the portion of the curve where buffering occurs
i. Identify the region of the buffer portion where the is more weak base than conjugate acid ion
ii. Identify the region of the buffer portion where there is more conjugate acid ion than weak base
h. mark the half-equivalence point with an H and label the volume and pH
i. mark the equivalence point with an X and label the volume and approximate the pH

8. 50 mL of 0.020 M magnesium hydroxide is titrated with 0.40 M nitric acid. Determine
a. if the acids/bases are strong or weak
b. if the acid:base is $1: 1$ or other
c. the initial pH before the titration begins
d. the volume of nitric acid required to reach the equivalence point
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7

On the graph,
f. label the axes
g. sketch the curve
h. mark the equivalence point with an X
i. state the pH and volume at the equivalence point

9. 40.0 mL of 0.100 M nitrous acid, $\mathrm{HNO}_{2}$ is titrated with 0.200 M potassium hydroxide, KOH . ( $K_{a}$ of nitrous acid $=5.6 \times 10^{-4}$ )
Determine
a. if the acids/bases are strong or weak
b. if the acid:base is $1: 1$ or other
c. the initial pH before the titration begins
d. the volume required to reach the equivalence point
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7

On the graph,

f. label the axes
g. sketch the curve
h. identify the portion of the curve where buffering occurs
iii. Identify the region of the buffer portion where the is more weak acid than conjugate base ion
iv. Identify the region of the buffer portion where there is more conjugate base ion than weak acid
i. mark the half-equivalence point with an H and label the volume and pH
j. mark the equivalence point with an X and label the volume and approximate the pH
10. 40.0 mL of 0.020 M aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$, is titrated with 0.040 M of nitric acid to its equivalence point. ( $K_{b}$ of aniline $=4.3 \times 10^{-10}$ )
Determine
a. if the acids/bases are strong or weak
b. if the acid:base is $1: 1$ or other
c. the initial pH before the titration begins
d. the volume required to reach the equivalence point
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7


On the graph,
f. label the axes
g. sketch the curve
h. identify the portion of the curve where buffering occurs
i. mark the half-equivalence point with an H and label the volume and pH
j. mark the equivalence point with an X and label the volume and approximate the pH

## Titration Curve Practice Problems (KEY)

1. From the graph at the right, determine
a. if the acids/bases are strong or weak

Strong acid+strong base because there is a steep vertical region centered at pH 7.
b. whether the acid or base was added from the buret The flask contained the acid, as evidenced by a pH 1.5 before anything else was added. As the solution is added from the buret the pH climbs and finishes in the basic pH region.
c. the volume required to reach the equivalence point 10 mL . The center of the vertical region occurs with 10 mL of base added.
d. the pH at the equivalence point

7. The center of the vertical region occurs at pH 7.
e. the concentration of base $(\mathrm{BOH})$ used if this titration started with 50.0 mL of 0.050 M acid, HA.

At the equivalence point moles acid = moles base.
moles acid = moles base
$(0.050 \mathrm{M})(0.050 \mathrm{~L})=0.0025 \mathrm{~mol}$ acid $=0.0025 \mathrm{~mol}$ base
$M_{b}=\frac{0.0025 \mathrm{~mol} \text { base }}{0.010 L}=0.25 \mathrm{M}$
2. From the graph at the right, determine
a. if the acids/bases are strong or weak

Weak acid + strong base because there is a squatty equivalence region whose center is at about pH 9 . Also, confirming this we see that the pH starts at 4ish (as opposed to 1ish) and ends near 13.
b. whether the acid or base was added from the buret The base is added from the buret since we see the pH increasing with additional volume added.
c. the volume required to reach the equivalence point 15 mL . The vertical region is centered at 15 mL .
d. the pH of the equivalence point
9. The center of the vertical region has a $y$ coordinate of approximately 9 .

e. the region where buffering occurs

From pH 4 to the equivalence point near pH 9 . All points after the initial point and before the equivalence point have buffer characteristics.
f. the volume and pH at the half equivalence point

If the equivalence point occurs at 15 mL , then the half-equivalence point occurs at 7.5 mL . Notice the relatively flat slope of the curve around the half-equivalence point. At this point maximum buffering is occurring and pH changes are slight. At 7.5 mL the pH is about 5 .
g. the $K_{a}$ of the acid used

Always remember that $\mathrm{pH}=\mathrm{pKa}$ at the half equivalence point. So, if the pH is 5 at the half equivalence point, the $\mathrm{pKa}=5$ and the Ka must be $1 \times 10^{-5}$.
h. the region where the [HA]:[A-] ratio has more [HA]

Since this titration started with a weak acid HA, the $\mathrm{A}^{-}$is being created as the strong base is added from the buret. Prior to the half-equivalence point there more HA than $\mathrm{A}^{-}$in the solution. As the half-equivalence point approaches and the amount of $\mathrm{A}^{-}$approaches equalizing with the amount of HA, that is where we see the best buffering solution and a flatter slope.
i. the region where the [HA]:[A-] ratio has more [A-]

After the half-equivalence point there more A- than HA in the solution. At the half-equivalence points HA and $\mathrm{A}^{-}$are equal, and beyond that additional base added from the buret shifts the balance to an increase in $\mathrm{A}^{-}$until the equivalence point is reached.
j. the concentration of a base $(\mathrm{BOH})$ if this represents reaction with 60.0 mL of 0.050 M acid, HA. At the equivalence point moles acid = moles base.
moles acid $=$ moles base
$(0.050 M)(0.060 L)=0.0030 \mathrm{~mol}$ acid
0.0030 mol acid $\times \frac{1 \mathrm{~mol} \text { base }}{2 \mathrm{~mol} \text { acid }}=0.0015 \mathrm{~mol}$ base
$M_{b}=\frac{0.0015 \mathrm{~mol} \text { base }}{0.015 \mathrm{~L}}=0.10 \mathrm{M}$
k. the concentration of a base $\left(\mathrm{B}(\mathrm{OH})_{2}\right)$ if this represents reaction with 60.0 mL of 0.050 M acid, HA.
At the equivalence point moles acid = moles base, but beware since this base releases $2 \mathrm{OH}^{-}$ ions $/ \mathrm{mol}$, you'll have to take that stoichiometry into consideration. Notice that with $2 \mathrm{OH}^{-} / \mathrm{mol}$ of base the concentration base required to neutralize the same amount of acid is exactly half of its value in ( j ).
moles acid = moles base
$(0.050 \mathrm{M})(0.060 \mathrm{~L})=0.0030 \mathrm{~mol}$ acid
0.0030 mol acid $\times \frac{1 \mathrm{~mol} \text { base }}{2 \mathrm{~mol} \text { acid }}=0.0015 \mathrm{~mol}$ base
$M_{b}=\frac{0.0015 \mathrm{~mol} \text { base }}{0.015 \mathrm{~L}}=0.10 \mathrm{M}$
3. From the graph at the right, determine
a. if the acids/bases are strong or weak

Weak base + strong acid because there is a squatty equivalence region whose center is at about pH 4 . Also, confirming this we see that the pH starts at 9 and ends near 1 .
b. whether the acid or base was added from the buret
The acid is added from the buret since we see the pH decreasing with additional volume added
c. the volume required to reach the equivalence point
20 mL . The vertical region is centered at 20 mL .

d. the pH of the equivalence point
4. The center of the vertical equivalence region has a y-coordinate of about 4 .
e. the region where buffering occurs

From pH 9 to the equivalence point near pH 4 . All points after the initial point and before the equivalence point have buffer characteristics.
f. the volume and pH at the half equivalence point

If the equivalence point occurs at 20 mL , then the half-equivalence point occurs at 10 mL . Notice the relatively flat slope of the curve around the half-equivalence point. At this point maximum buffering is occurring and pH changes are slight. At 10 mL the pH is about 7 .
g. the $K_{b}$ of the base used

Always remember that $\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}$ at the half equivalence point. Since the pH is 7 at this halfequivalence point the $\mathrm{pK}_{\mathrm{a}}$ is also 7 and the Ka is $1 \times 10^{-7}$. But, ah, we need the Kb since that is what the question asked for. $\mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}$ so simply divide $1 \times 10^{-14}$ by $1 \times 10^{-7}$ to find the $\mathrm{K}_{\mathrm{b}}$. In this particular case, it happens to be equal to the $\mathrm{K}_{\mathrm{a}}$ at $1 \times 10^{-7}$. This will not usually be the case.
h. the region where there is more base than conjugate acid ion.

All points prior to the half-equivalence point will have a greater proportion of weak base than conjugate acid ion. With the weak base in the flask, the strong acid coming from the buret creates a conjugate acid ion with each drop that is added. Prior to the half-equivalence point there will be more weak base in the solution with increasing amounts of conjugate acid ion being created as the strong acid drips in. As the half equivalence point approaches, the pH curve flattens out as a more balanced buffer solution is created.
i. the region where the [base]:[conj. acid ion] ratio has more [conj. acid ion]

After the half-equivalence point and through the equivalence point there will be a greater proportion of conjugate acid ion than of weak base. At the half-equivalence point exactly half of the weak base will have been converted to conjugate ion. Beyond that point the balance shifts to a more conjugate acid ion than weak base in the solution. This occurs all the way up to the equivalence point where ALL of the weak base will have reacted and only the salt of the conjugate ion remains.
j. the concentration of acid used if this represents the titration of 30 mL of 0.25 M base.

At the equivalence point moles acid = moles base
moles acid = moles base
$(0.25 M)(0.030 \mathrm{~L})=0.0075 \mathrm{~mol}$ base $=0.0075 \mathrm{~mol}$ acid
$M_{a}=\frac{0.0075 \mathrm{~mol} \text { base }}{0.020 \mathrm{~L}}=0.375 \mathrm{M}$
4. 25 mL of $0.10 M \mathrm{NaOH}$ is titrated with $0.20 M \mathrm{HCl}$.

Determine,
a. if the acids/bases are strong or weak

NaOH is a strong base and HCl is a strong acid
b. if the acid:base is $1: 1$ or other

HCl releases $1 \mathrm{H}^{+}$and NaOH releases $1 \mathrm{OH}^{-}$
c. the initial pH before the titration begins

The pH of a strong base is $14-\mathrm{pOH}$. The pOH of 0.10 M NaOH is $-\log [0.10]=1$. So the $\mathrm{pH}=14-1=13$
d. the volume required to reach the equivalence point

At the equivalence point moles acid = moles base.
moles acid = moles base
$(0.10 M)(0.025 L)=0.0025 \mathrm{~mol}$ base $=0.0025 \mathrm{~mol}$ acid
$M_{a}=\frac{\text { mol acid }}{V_{a}} \therefore V_{a}=\frac{\text { mol acid }}{M_{a}}$
$V_{a}=\frac{0.0025 \mathrm{~mol} \text { acid }}{0.20 \mathrm{M}}$
$V_{a}=12.5 \mathrm{~mL}$
e. the identity of the major species present at the equivalence point

At the equivalence point all of the NaOH and HCl have reacted leaving only NaCl and $\mathrm{H}_{2} \mathrm{O}$.
NaCl is a neutral salt that does not undergo any hydrolysis.
On the graph,
f. label the axes
$y$-axis is $\mathrm{pH}, \mathrm{x}$-axis is volume of acid added
g. sketch the curve
see graph
h. mark the equivalence point with an X see graph
i. state the pH and volume at the equivalence point the equivalence point should be at pH 7 and 12.5 mL
5. 40.0 mL of 0.020 M sorbic acid, $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{2}$, is titrated with 0.040 M of sodium hydroxide to its equivalence point. ( $K_{a}$ of sorbic acid $=1.7 \times 10^{-5}$ )
Determine
a. if the acids/bases are strong or weak

Sorbic acid is weak and sodium hydroxide is strong.
b. if the acid:base is $1: 1$ or other

Sorbic acid has one ionizable $\mathrm{H}^{+}$and NaOH has one $\mathrm{OH}^{-}$.
c. the initial pH before the titration begins

The initial pH of a weak acid is determined from its equilibrium constant.
$K a=\frac{[x]^{2}}{[\text { orig }]}$
$1.7 \times 10^{-5}=\frac{[x]^{2}}{[0.020]}$
$x=5.8 \times 10^{-4}=\left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log \left[5.8 \times 10^{-4}\right]=3.23$

d. the volume of sodium hydroxide required to reach the equivalence point

At the equivalence point moles acid = moles base. (Notice for this one that the base is exactly
twice as concentrated as the acid, therefore it should take half as much volume to deliver an
equivalent number of moles.)
moles acid = moles base
$(0.020 M)(0.040 \mathrm{~L})=0.00080 \mathrm{~mol}$ acid $=0.00080 \mathrm{~mol}$ base
$M_{b}=\frac{\text { mol base }}{V_{b}} \therefore V_{b}=\frac{m o l ~ b a s e}{M_{b}}$
$V_{b}=\frac{0.00080 \mathrm{~mol} \text { base }}{0.040 \mathrm{M}}$
$V_{b}=20.0 \mathrm{~mL}$
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7 .
At the equivalence point all of the weak acid $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{2}$ will have reacted with NaOH creating an equivalent number of moles of the conjugate base salt, $\mathrm{NaC}_{6} \mathrm{H}_{7} \mathrm{O}_{2}$. This is a basic salt and we expect the pH to be greater than 7 .
On the graph,
f. label the axes
y -axis is pH ; x -axis is volume of base added
g. sketch the curve
see graph
h. identify the portion of the curve where buffering occurs see graph
i. Identify the region of the buffer portion where the is more weak acid than conjugate base ion from the first drop through the half-equivalence point
ii. Identify the region of the buffer portion where there is more conjugate base ion than weak acid from the half-equivalence point to the equivalence point
i. mark the half-equivalence point with an H and label the volume and pH see graph
j. mark the equivalence point with an X and label the volume and approximate the pH volume at equivalence point is 20.0 mL and pH should be greater than 7
6. 20.0 mL of $0.030 M$ nitric acid is titrated with 0.040 M potassium hydroxide. Determine,
a. if the acids/bases are strong or weak

Nitric acid is a strong acid and potassium hydroxide is a strong base
b. if the acid:base is $1: 1$ or other
$\mathrm{HNO}_{3}$ and KOH react in a 1:1 mole ratio
c. the initial pH before the titration begins

The pH of a strong acid is $-\log \left[\mathrm{H}^{+}\right]$. The pH of 0.03 M is $\mathrm{HNO}_{3}-\log [0.030]=1.52$.
d. the volume of KOH required to reach the equivalence point
At the equivalence point moles acid = moles base
moles acid = moles base
$(0.030 \mathrm{M})(0.020 \mathrm{~L})=0.00060 \mathrm{~mol}$ acid $=0.00060 \mathrm{~mol}$ base
$M_{b}=\frac{\text { mol base }}{V_{b}} \therefore V_{b}=\frac{\text { mol base }}{M_{b}}$
$V_{b}=\frac{0.00060 \mathrm{~mol} \text { base }}{0.040 \mathrm{M}}$
$V_{b}=15 \mathrm{~mL}$
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7
At the equivalence point all of the nitric acid will have reacted with the potassium hydroxide leaving only the salt, $\mathrm{KNO}_{3}$ and water. Since this salt is a neutral salt the pH should be 7 .

On the graph,
f. label the axes
y -axis is pH ; x -axis is volume of base added
g. sketch the curve see graph
h. mark the equivalence point with an X see graph
i. state the pH and volume at the equivalence point

The pH will be 7 and the volume is 15 mL at the equivalence point
7. 20.0 mL of 0.060 M solution of ammonia, $\mathrm{NH}_{3}$ is titrated with 0.060 M perchloric acid, $\mathrm{HClO}_{4}$. $\left(K_{b}\right.$ of ammonia is $1.8 \times 10^{-5}$ )
Determine
a. if the acids/bases are strong or weak

Ammonia is a weak base and perchloric acid is a strong acid
b. if the acid:base is $1: 1$ or other

Ammonia and perchloric react in a 1:1 mole ratio
c. the initial pH before the titration begins

The initial pH of a weak base is determined from its equilibrium constant.
$K_{b}=\frac{[x]^{2}}{[\text { orig }]}$
$1.8 \times 10^{-5}=\frac{[x]^{2}}{[0.060]}$
$x=1.0 \times 10^{-3}=\left[\mathrm{OH}^{-}\right]$
$\mathrm{pOH}=-\log \left[1.0 \times 10^{-3}\right]=3.0$
$\mathrm{pH}=14-3=11$
d. the volume of perchloric acid required to reach the equivalence point
At the equivalence point moles acid = moles base. (Notice for this one that the acid and base concentrations are equal. Equal concentrations require equal volumes to reach the equivalence

point.)
moles acid = moles base
$(0.060 M)(0.020 L)=0.0012 \mathrm{~mol}$ base $=0.0012 \mathrm{~mol}$ acid
$M_{a}=\frac{\text { mol acid }}{V_{a}} \therefore V_{a}=\frac{\text { mol acid }}{M_{a}}$
$V_{\mathrm{a}}=\frac{0.0012 \mathrm{~mol} \text { acid }}{0.060 \mathrm{M}}$
$V_{a}=20.0 \mathrm{~mL}$
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7
At the equivalence point all of the weak base $\mathrm{NH}_{3}$ will have reacted with $\mathrm{HClO}_{4}$ creating an equivalent number of moles of the conjugate acid salt, $\mathrm{NH}_{4} \mathrm{ClO}_{4}$. This is an acidic salt and we expect the pH to be less than 7 .
On the graph,
f. label the axes
$y$-axis is pH ; x -axis is volume of base added
g. sketch the curve see graph
k. identify the portion of the curve where buffering occurs see graph
i. Identify the region of the buffer portion where the is more weak base than conjugate acid ion from the first drop through the half-equivalence point
ii. Identify the region of the buffer portion where there is more conjugate acid ion than weak base from the half-equivalence point to the equivalence point
h. mark the half-equivalence point with an H and label the volume and pH
the half equivalence point occurs at 10 mL and should have a $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$. Since this is a base whose $\mathrm{K}_{\mathrm{b}}$ is $1.8 \times 10^{-5}$ its $\mathrm{K}_{\mathrm{a}}$ is $1 \times 10^{-14} / 1.8 \times 10^{-5}$, or $5.6 \times 10^{-10}$. The $\mathrm{pKa}=-\log \left[5.6 \times 10^{-10}\right]=9.25$.
i. mark the equivalence point with an X and label the volume and approximate the pH

At the equivalence point all of the weak base $\mathrm{NH}_{3}$ will have reacted with $\mathrm{HClO}_{4}$ creating an equivalent number of moles of the conjugate acid salt, $\mathrm{NH}_{4} \mathrm{ClO}_{4}$. This is an acidic salt and we expect the pH to be less than 7 .
8. 50 mL of 0.020 M magnesium hydroxide is titrated with 0.40 M nitric acid. Determine
a. if the acids/bases are strong or weak
$\mathrm{Mg}(\mathrm{OH})_{2}$ is a strong base and $\mathrm{HNO}_{3}$ is a strong acid
b. if the acid:base is $1: 1$ or other
$\mathrm{HNO}_{3}$ releases $1 \mathrm{H}^{+} / \mathrm{mol}$ but $\mathrm{Mg}(\mathrm{OH})_{2}$ releases $2 \mathrm{OH}^{-}$ /mol.
c. the initial pH before the titration begins

Be careful, this is a tricky one! Since $\mathrm{Mg}(\mathrm{OH})_{2}$ is strong and it releases $2 \mathrm{OH}-/ \mathrm{mol}$, a 0.20 M solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ would contain 0.040 M OH -. So the pH would be $14-(-$ $\log (0.040))=12.6$

d. the volume of nitric acid required to reach the equivalence point

At the equivalence point moles acid = moles base, but beware the reacting ratio is not 1:1. Since this base releases $2 \mathrm{OH}-$ ions $/ \mathrm{mol}$, you'll have to take that stoichiometry into consideration.
moles acid = moles base
$(0.040 \mathrm{M})(0.050 \mathrm{~L})=0.0020 \mathrm{~mol}$ base
0.0020 mol base $\times \frac{2 \mathrm{~mol} \text { acid }}{1 \mathrm{~mol} \text { base }}=0.0040 \mathrm{~mol}$ acid
$V_{a}=\frac{0.0040 \mathrm{~mol} \text { acid }}{0.40 \mathrm{M}}=0.010 \mathrm{~L}$
$V_{a}=10 \mathrm{~mL}$
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7
At the equivalence point all of the $\mathrm{Mg}(\mathrm{OH})_{2}$ base will have reacted with the $\mathrm{HNO}_{3}$ to produce the neutral salt $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$. Since this is a neutral salt the pH will be 7 .
On the graph,
f. label the axes
y -axis is pH ; x -axis is volume of base added
g. sketch the curve see graph
h. mark the equivalence point with an X see graph
i. state the pH and volume at the equivalence point

The pH is 7 and the volume is 10 mL at the equivalence point
9. 40.0 mL of 0.100 M nitrous acid, $\mathrm{HNO}_{2}$ is titrated with 0.200 M potassium hydroxide, KOH . ( $K_{a}$ of nitrous acid $=5.6 \times 10^{-4}$ )
Determine
a. if the acids/bases are strong or weak nitrous acid is a weak acid and potassium hydroxide is a strong base.
b. if the acid:base is $1: 1$ or other
nitrous acid and potassium hydroxide react in a $1: 1$ stoichiometric ratio
c. the initial pH before the titration begins

The initial pH of a weak acid is determined from its equilibrium constant.

$K a=\frac{[x]^{2}}{[\text { orig] }}$
$5.6 \times 10^{-4}=\frac{[x]^{2}}{[0.100]}$
$x=7.5 \times 10^{-3}=\left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log \left[7.5 \times 10^{-3}\right]=2.13$
d. the volume required to reach the equivalence point

At the equivalence point moles acid = moles base. (Notice for this one that the base
concentration is twice that of the acid. Therefore, it should require only half as much volume to
deliver an equivalent number of moles.)
moles acid = moles base
$(0.100 \mathrm{M})(0.040 \mathrm{~L})=0.0040 \mathrm{~mol}$ acid $=0.0040 \mathrm{~mol}$ base
$V_{b}=\frac{\mathrm{mol} \text { base }}{M_{b}}=\frac{0.0040 \mathrm{~mol} \text { base }}{0.200 \mathrm{M}}=0.020 \mathrm{~L}$
$V_{b}=20 \mathrm{~mL}$
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7
At the equivalence point all of the $\mathrm{HNO}_{2}$ acid will have reacted with the KOH base to produce the conjugate base salt $\mathrm{KNO}_{2}$. Since this is a basic salt the pH will be greater than 7 .
On the graph,
f. label the axes
y -axis is pH ; x -axis is volume of base added
g. sketch the curve see graph
h. identify the portion of the curve where buffering occurs see graph
iii. Identify the region of the buffer portion where the is more weak acid than conjugate base ion from the first drop through the half-equivalence point
iv. Identify the region of the buffer portion where there is more conjugate base ion than weak acid from the half-equivalence point to the equivalence point
i. mark the half-equivalence point with an H and label the volume and pH see graph
j. mark the equivalence point with an X and label the volume and approximate the pH The equivalence point occurs at 10 mL and should have a pH greater than 7 .
10. 40.0 mL of 0.020 M aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$, is titrated with 0.040 M of nitric acid to its equivalence point. ( $K_{b}$ of aniline $=4.3 \times 10^{-10}$ )
Determine
a. if the acids/bases are strong or weak
aniline is a weak base and nitric acid is a strong acid
b. if the acid:base is $1: 1$ or other
aniline and nitric acid react in a $1: 1$ stoiciometric ratio
c. the initial pH before the titration begins

The initial pH of a weak base is determined from its equilibrium constant.
$K b=\frac{[x]^{2}}{[\text { orig] }}$
$4.3 \times 10^{-10}=\frac{[x]^{2}}{[0.020]}$
$x=2.9 \times 10^{-6}=\left[\mathrm{OH}^{-}\right]$
$\mathrm{pOH}=-\log \left[2.9 \times 10^{-6}\right]=5.53$
$\mathrm{pH}=14-5.53=8.46$
d. the volume required to reach the equivalence point

At the equivalence point moles acid = moles base. (Notice for this one that the acid
concentration is twice that of the base. Therefore, it should require only half as much volume to deliver an equivalent number of moles.)
moles base $=$ moles acid
$(0.020 \mathrm{M})(0.040 \mathrm{~L})=0.00080 \mathrm{~mol}$ base $=0.00080 \mathrm{~mol}$ acid
$\mathrm{V}_{\mathrm{a}}=\frac{\mathrm{mol} \text { acid }}{M_{a}}=\frac{0.00080 \mathrm{~mol} \text { acid }}{0.040 \mathrm{M}}=0.020 \mathrm{~L}$
$V_{a}=20 \mathrm{~mL}$
e. the identity of the major species present at the equivalence point and whether the pH should be greater than, less than, or equal to 7
At the equivalence point all of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ will have reacted with the $\mathrm{HNO}_{3}$ to produce the conjugate acid salt $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}$. Since this is acidic salt the pH will be greater than 7 .
On the graph,
f. label the axes
y -axis is pH ; x -axis is volume of base added
g. sketch the curve see graph
h. identify the portion of the curve where
 buffering occurs see graph
i. mark the half-equivalence point with an H and label the volume and pH see graph
j. mark the equivalence point with an X and label the volume and approximate the pH The equivalence point occurs at 10 mL and should have a pH less than 7 .

