Problem Set 3: Ideal Gas Law - Applications and Stoichiometry | 47. Complete the following table for an ideal gas. | | | | | The steel reaction vessel of a bomb calorimeter, which has a
volume of 75.0 mL, is charged with oxygen gas to a pressure | |--|---|--------------|----------------------------------|----------------|--| | | P (atm) V (L) n (mol) T | | | | of 14.5 atm at 22°C. Calculate the moles of oxygen in the reac- | | a.
b.
c.
d. | 5.00 | 2.00
25.0 | 2.00 | 155°C
155 K | tion vessel. | | | $\frac{1}{2} \exp(-i\beta \pi i \partial_{x} (x) + i\beta \pi i \partial_{x} (x) + i\alpha $ | | | | | | | | | | | | | | | | | 3 | | | 52. A 5.0-L flask contains 0.60 g O ₂ at a temperature of 22°C. What is the pressure (in atm) inside the flask? | | | | | 61. An ideal gas is contained in a cylinder with a volume of 5.0 × 10 ² mL at a temperature of 30.°C and a pressure of 710, torr. The gas is then compressed to a volume of 25 mL, and the temperature is raised to 820.°C. What is the new pressure of the gas? | | 5 | | | | | 6 | | 63. A sealed balloon is filled with 1.00 L helium at 23°C and 1.00 atm. The balloon rises to a point in the atmosphere where the pressure is 220. torr and the temperature is -31°C. What is the change in volume of the balloon as it ascends from 1.00 atm to a pressure of 220. torr? | | | | | 10.36 A neon sign is made of glass tubing whose inside diameter is 2.5 cm and whose length is 5.5 m. If the sign contains neon at a pressure of 1.78 torr at 35 °C, how many grams of neon are in the sign? (The volume of a cylinder is $\pi r^2 h$.) | | | Maria We | 7 | | | 8 | | air | | me is 2.25 L | olecules in a d
at body tempo | | 49. Suppose two 200.0-L tanks are to be filled separately with the gases helium and hydrogen. What mass of each gas is needed to produce a pressure of 2.70 atm in its respective tank at 24°C? | | 9 | | | | | 10 | | 10.40 An aerosol spray can with a volume of 250 mL contains 2.30 g of propane gas (C ₃ H ₈) as a propellant. (a) If the can is at 23 °C, what is the pressure in the can? (b) What volume would the propane occupy at STP? (c) The can says that exposure to temperatures above 130 °F may cause the can to burst. What is the pressure in the can at this temperature? | | | | | 10.42 Many gases are shipped in high-pressure containers. Consider a steel tank whose volume is 65.0 L and which contains O₂ gas at a pressure of 16,500 kPa at 23 °C. (a) What mass of O₂ does the tank contain? (b) What volume would the gas occupy at STP? (c) At what temperature would the pressure in the tank equal 150.0 atm? (d) What would be the pressure of the gas, in kPa, if it were transferred to a container at 24 °C whose volume is 55.0 L? | | 11 | | | | | 12 | | 66. A student adds 4.00 g of dry ice (solid CO ₂) to an empty balloon. What will be the volume of the balloon at STP after all the dry ice sublimes (converts to gaseous CO ₂)? | | | | | 10.46 Rank the following gases from least dense at 1.00 atm and 298 K to most dense under these same conditions SO ₂ , HBr, CO ₂ . Explain. | | 13 | 14 | | |---|--|--| | 10.49 (a) Calculate the density of NO ₂ gas at 0.970 atm and 35 °C. (b) Calculate the molar mass of a gas if 2.50 g occupies 0.875 L at 685 torr and 35 °C. | 77. An unknown diatomic gas has a density of 3.164 g/L at STP. What is the identity of the gas? | | | 15 | 16 | | | 10.112 Cyclopropane, a gas used with oxygen as a general anesthetic, is composed of 85.7% C and 14.3% H by mass. (a) If 1.56 g of cyclopropane has a volume of 1.00 L at 0.984 atm and 50.0 °C, what is the molecular formula | 67. Air bags are activated when a severe impact causes a steel ball to compress a spring and electrically ignite a detonator cap. This causes sodium azide (NaN ₃) to decompose explosively according to the following reaction: | | | of cyclopropane? | $2NaN_3(s) \longrightarrow 2Na(s) + 3N_2(g)$ | | | | What mass of NaN ₃ (s) must be reacted to inflate an air bag to 70.0 L at STP? | | | 17 | 18 | | | 10.55 The metabolic oxidation of glucose, C ₆ H ₁₂ O ₆ , in our bodies produces CO ₂ , which is expelled from our lungs as a gas: | Ethanol (C_2H_5OH) burns in air:
C_2H_5OH (l) + O_2 (g) \rightarrow CO_2 (g) + H_2O (g) | | | $C_6H_{12}O_6(aq) + 6 O_2(g) \longrightarrow 6 CO_2(g) + 6 H_2O(i)$ | | | | a) Calculate the volume of dry CO ₂ produced at body tem-
perature (37 °C) and 0.970 atm when 24.5 g of glucose is
consumed in this reaction. | Balance the equation and determine the volume of air in Liters at 35.0°C and 790. mm Hg required to burn | | | b) Calcaulte the volume of oxygen at 1 atm and 298 K gas needed
to completely oxidize 50.0 g of glucose. | 227 grams of ethanol. Assume that air is 21.0 percent O_2 by volume. | | | 19 | 20 | | | In alcoholic fermentation, yeast converts glucose to ethanol and carbon dioxide: | 10.113 Consider the combustion reaction between 25.0 mL of liquid methanol (density = 0.850 g/mL) and 12.5 L of oxygen gas measured at STP. The products of the reac- | | | $C_6H_{12}O_6(s) \rightarrow 2 C_2H_5OH(l) + 2 CO_2(g)$ | tion are $CO_2(g)$ and $H_2O(g)$. Calculate the number of moles of H_2O formed if the reaction goes to completion. | | | If 5.97 g of glucose are reacted and 1.44 L of CO ₂ gas are collected at 293 K and 0.984 atm, what is the percent yield of the reaction? | | |