Name	Date	Period

Lab: Food Chains and Food Webs

Background: What happens to the energy in an ecosystem when one organism eats another? That energy moves along a **one-way path**. Energy flows through an ecosystem in one direction, from the sun or inorganic compounds in **autotrophs** (producers) and then to various **heterotrophs** (consumers). The relationships between producers and consumers connect organisms into feeding networks based on who eats whom. **Food Chains:** The energy stored by producers can be passed through an ecosystem along a food chain, a series of steps in which organisms transfer energy by eating and being eaten. **Food Webs:** In most ecosystems, feeding relationships are more complex than can be shown in a food chain. When the feeding relationships among the various organisms in an ecosystem form a network of complex interactions, ecologists describe these relationships as a food web. A food web links all the food chains in an n ecosystem together. Each step in a food chain or food web is called a **trophic level**. Producers make up the first trophic level. Consumers make up the second, third, or higher trophic levels. Each consumer depends on the trophic level below it for energy.

Directions: Using your notes, textbook, and the internet, answer the following questions

Proceedure:

1. Design a **food chain** in any ecosystem you chose and complete the data table below. You must include a minimum of **five** (5) trophic levels (the last one being a decomposer). Identify the organisms below:

Trophic Level	Organism name	Producer Consumer Decomposer	Type of consumer Herbivore/Omnivore Carnivore/Decomposer
5			
4			
3			
2			
1			Photosynthetic organism

- 2. Using page provided in handout, draw a food chain containing these organisms. Label each **trophic level** and draw <u>arrows</u> to show the "**flow of energy**" in your food chain.
- 3. Using the same ecosystem you selected above, design a **food web** which includes the food chain you described above as well as an additional <u>10 organisms</u> and draw it on a page provided. These "new" organisms can be located in any of the trophic levels you want. Label each of the trophic levels and each of your organisms. Draw <u>arrows</u> from each organism to show the **flow of energy**.
- 4. When you are finished with both the food chain and food web, answer the conclusion questions (last page)

FOOD CHAIN (Draw below)

FOOD WEB (Draw below)

1. What is a	a trophic level?	
2. What is t	the ultimate source of energy for most organisms on our planet?	
3. What is t	the difference between a food chain and a food web ?	
4. What is a	a decomposer ? Give examples	
5 Why is th	he transfer of energy and matter in a food chain only about 10 percent efficient?	,
J. Willy 15 ti	ne transfer of energy and matter in a food chain only about 10 percent emclent :	
6. What is a	an ecological pyramid? Describe the three different types of ecological pyramic	ls.

Questions:

7.	Give an example of a pyramid of numbers that can be described by an "upside down" pyramid shape. (ie. Less producers than consumers)
8.	What is a biogeochemical cycle?
9.	Define the following terms: Herbivore, carnivore, omnivore, decomposer, autotroph, heterotroph .
10	. Besides the process of photosynthesis, what other process can produce chemical energy
10	(carbohydrates) in the absence of light? Give an example and describe where this takes place.