Mechanisms of Evolution (How Evolution Happens) Internet Assignment

Name:	
Visit <u>https://ww</u>	w.questionshouse.com/blog/five-forces-evolution/ and describe the 5 forces of evolution and provide
one example of	each.
1. <u>Natura</u>	l <u>Selection</u> :
Example of Nat	ural Selection:
2. <u>Geneti</u>	<u>c Drift</u> :
Example of Ger	netic Drift:
3. Mutati	ons:
Example of Mu	tations:
4. <u>Gene F</u>	low:
Example of Ger	ne Flow:
5. <u>Non-Ra</u>	ndom Mating:
Example of Non	-Random Mating:

Go to the Genetic Drift-Bottleneck Event Simulation on Biology Simulations.

In the simulation, only population that doesn't					will result in a final
Run the simulation fou	ır times and recc	ord the post-dro u	ight frequencies	s in the table.	
Trial	1	2	3	4	Average
Blue Allele					
Red Allele					
Blue Phenotype					
Purple Phenotype					
Red Phenotype					
Describe your results.					
		impacted by the	bottleneck ever	nt. Research a	specific example of ge
Describe how endanger	a species.				
Describe how endanged diversity in endangered					

Next vi 6.		Founder Effect Simulation on Biology Simulations brough the simulation once. Describe what happened.	
	Nume	indigit the simulation office. Beschibe what happened.	
7.	How	do the allelic frequencies from the mainland differ from that of the Isla	and. Discuss the data from the graph.
		Go to the <u>Population Genetics Simulation</u> at Biology Sim	
1.		nfew minutes to read the Introduction information and play with the a ation works.	ivailable variables to see how the
2.		your experimental question:	
How		Population Size	affect change to allele frequency?
3.	Write	a hypothesis:	
The h	igher t	he population, the more frequent the change	
4.		your procedure. Be sure to specify the tested range of your independentled variables, and number of trials.	ent variable, the settings for

5. Perform your procedure and record the data in an appropriate chart (you can use Insert Table on Docs or use a spreadsheet). Account for starting and ending allele frequencies. Make sure you have a place for each trial and an average.

	Allelic Frequency				
	Generation 1	Generation 2	Generation 3	Generation 4	Generation 5
Blue Allele			ę · .		
Red Allele					
Blue Phenotype					
Purple Phenotype					
Red Phenotype					

6. Insert an appropriate graph to represent your data.

7. Discussion: Describe your data and attempt to explain why the results occurred. Based on the data, answer your original question.

	cenario, indicate whether it represents Allopatric speciation (A) or isolating mechanism described (temporal, behavioral, mechanica	-	
		Туре	Isolating mechanism
1	Birds in an area attract mates by offering gifts to the females. One group of birds offers food gifts, like worms. Another group generally offers colored objects for decorating nests.		
*	Squirrels on the Kaibab plateau cannot easily reach the valley where gray squirrels live. These two groups do not interbreed.		
	Lunar moths use powerful pheromones to attract mates. Moths of a different species do not respond.		
THE	A group of closely related mosquitoes that live in Louisiana has a different preference for the type of water they lay eggs in. One prefers freshwater and the other prefers salt water.		
10	In snails that are closely related, the direction of shell coiling is either to the left or to the right. Left-coiled snails cannot mate with right-coiled ones.		
302	The red-legged frog breeds from November to April. The yellow-legged frog breeds from May-June. Both live in the same area.	-	
	Cuttlefish flash a sequence of colors to either warn rivals away or attract females. Females of their species will only respond to a specific series of color flashes.		
	The saddleback tortoise lives on a different island than the domed tortoise of the Galapagos. Neither tortoise can swim to the other island.		
Design y	our own scenario.		

Speciation Scenarios (Reinforcement)

Name:_____

Speciation Graphics - For each graphic shown below, identify the type of speciation and write a short caption describing the events occurring in the process.

Type of Speciation:

Description:

Type of Speciation:

Description:

Parapatric Speciation - The following graphic shows a type of speciation called **parapatric speciation**. In this case, a group of moths were small enough to occupy nests in a new type of plant that was introduced to the habitat. Larger moths could not. Propose a definition or description for the process of parapatric speciation.

Description: