Chromosomes and Chromosome Number

All students in your class have characteristics passed on to them by their parents. Each characteristic, such as hair color, eye color, and height, is called a trait.

The instructions for each trait are found on chromosomes. Recall that chromosomes are found in the nuclei of cells. The DNA on the chromosomes is arranged in sections that control the production of proteins. These DNA sections are called **genes**. Each chromosome has about 1500 genes. Each gene has a role in the characteristics of the cell and how the cell works. Living things have thousands of genes.

Human body cells have 46 chromosomes. Chromosomes come in pairs. You have 23 chromosomes from your father and 23 chromosomes from your mother, making 23 pairs of chromosomes.

What are homologous chromosomes?

The chromosomes that make up a pair, one from each parent, are called <u>homologous</u> (huh MAH luh gus) <u>chromosomes</u>. Homologous chromosomes are the same length and have the centromere in the same place. They also carry genes for the same traits at the same place. Look at the picture below, and see if you can spot the homologous pair.

Homologous chromosomes are similar but not identical. For example, the gene for ear shape will be located at the same place on each homologous chromosome. Although these genes code for ear shape, the gene on one chromosome might code for one ear shape. The gene on the other chromosome might code for a different ear shape.

How is chromosome number maintained in a species?

The number of chromosomes does not change from generation to generation. You have the same number of chromosomes as your parents. <u>Gametes</u> (GA meets), or sex cells with half the number of chromosomes, ensure the chromosome number stays the same.

The symbol n represents the number of chromosomes. In humans, n is equal to 23. A cell with n number of chromosomes is called a <u>haploid</u> cell. Gametes are haploid cells.

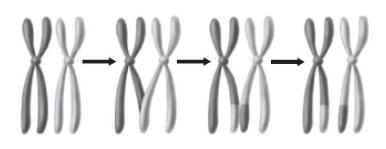
The process in which one haploid gamete joins with another haploid gamete is called <u>fertilization</u>. After fertilization, the cell has 2n chromosomes—n chromosomes from the female parent plus n chromosomes from the male parent. A cell with 2n chromosomes is called a <u>diploid</u> cell. Notice that n also represents the number of chromosome pairs in an organism.

Meiosis I

Recall that most cells are formed by mitosis. During mitosis the chromosome number stays the same. Because sex cells need half the number of chromosomes, a different process of cell division is needed. Gametes are formed during a process called meiosis. <u>Meiosis</u> is a kind of cell division that reduces the number of chromosomes by half through the separation of homologous chromosomes. Meiosis takes place in the reproductive organs of plants and animals. During meiosis, there are two cell divisions. They are called meiosis I and meiosis II.

What happens during interphase I?

Just as in mitosis, a cell goes through interphase before undergoing meiosis. A cell in interphase carries out a variety of metabolic functions, copies its DNA, and makes proteins.


What happens during prophase I?

Meiosis I begins with prophase I. During prophase I, replicated chromosomes, consisting of two sister chromatids, condense. When that happens, the chromosomes become visible under a light microscope.

As the homologous chromosomes condense, they begin to form homologous pairs in a process called synapsis (suh NAP sus). The homologous chromosomes are held tightly together along their lengths by a protein that acts like a zipper. Prophase I continues as the chromosomes move to opposite sides of the cell.

What is crossing over?

During synapsis, the chromosomes often swap pieces of DNA. <u>Crossing over</u> occurs when a section of one chromosome changes place with a section of its homologous chromosome. This is shown in the figure below. The centrioles move to the opposite poles of the cell. Spindle fibers form and bind to the sister chromatids at the centromere.

What happens during metaphase I?

The next phase is metaphase I. During metaphase I, the pairs of homologous chromosomes line up in the center of the cell. The spindle fibers attach to the centromere of each homologous chromosome.

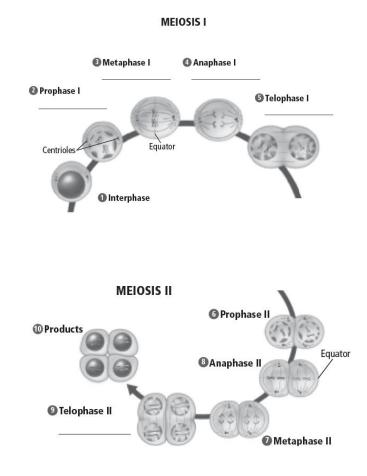
What happens during anaphase I?

Next is anaphase I. During anaphase I, each homologous chromosome is guided by the spindle fibers toward opposite poles of the cell. When this happens, the chromosome number is reduced from 2n to n. Notice that the sister chromatids do not split during meiosis I. Each homologous chromosome still has two sister chromatids.

What is the final stage of meiosis I?

The final stage of meiosis I is telophase I. During telophase I, the homologous chromosomes reach opposite poles of the cell. Each pole contains only one member of a pair of homologous chromosomes.

The sister chromatids might not be identical because crossing over might have occurred during synapsis in prophase I. Crossing over is one way that meiosis leads to more genetic diversity. This diversity helps explain how species can change over time.


At the end of telophase I, the cell undergoes cytokinesis, meaning it divides into two cells. The cells then might go into interphase again, but this time, the DNA is not copied during interphase. The events of meiosis I are shown below.

Meiosis II

Meiosis is now half finished. To complete meiosis, the cell must go through meiosis II. Meiosis II is similar to mitosis.

What events occur during meiosis II?

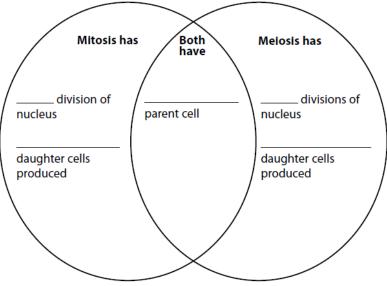
During prophase II, the spindle apparatus forms, and the chromosomes condense. During metaphase II, a haploid number of chromosomes lines up near the center of the cell by the spindle fibers. During anaphase II, the sister chromatids are pulled apart at the centromere by the spindle fibers, and the sister chromatids are pulled to the opposite poles of the cell. In telophase II, the chromosomes reach the poles, and the nuclear membrane and nuclei reform. Cytokinesis, or cell division, occurs. The result is four haploid cells, each with *n* number of chromosomes.

The Importance of Meiosis

The figure below shows that meiosis and mitosis have similar steps, but they are different in important ways. An important difference is that mitosis produces two identical diploid daughter cells, while meiosis produces four different haploid daughter cells.

	Mitosis	Meiosis	
Number of cell divisions	one	two	
Synapsis of homologous chromosomes	does not occur	occurs during prophase l	
Products	identical, diploid cells	nonidentical, haploid cells	
Type of cells produced	body cells	reproductive cells	
Purpose	growth and repair of body tissues	production of gametes for sexual reproduction	

Word Bank	Use the terms in the left margin to complete the paragraph below.		
Diploid	A segment of DNA on a chromosome that controls the production		
Gamete Gene	of a protein is called a A cell contains		
Haploid	two copies of each chromosome. A sex cell, or, is		
Homologous chromosomes	, meaning it contains one copy of each chromosome.		
Meiosis Fertilization	are pairs of chromosomes, one		
Crossing over	from each parent.		


Compare meiosis and mitosis by filling in the chart below.

	Mitosis	Meiosis
Number of DNA replications		
Number of cell divisions		
Number of daughter cells		
Chromosome number of daughter cells		

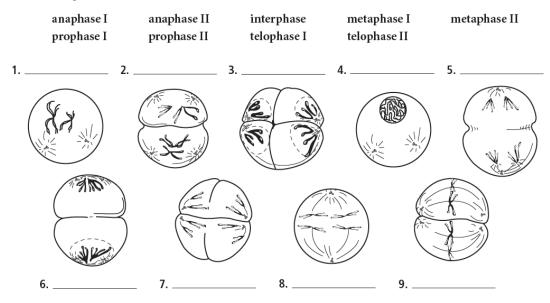
Model *the process of* sexual reproduction. *Complete the diagram using these labels:*

• egg • sperm • fertilization • zygote Mother Father Father Compare and co New organism Mitor daughter cells produced

Compare and contrast meiosis *and* mitosis *and cell division*.

Sexual Reproduction and Meiosis

Key Concept What is the order of the phases of meiosis, and what happens in each phase?


Directions: On each line, write the term from the word bank that correctly completes each sentence. Some terms may be used more than once or not at all.

	diploid	haploid	homologous chromosomes	
	meiosis	mitosis	sister chromatids	
1.	In meiosis, o	one	cell divides to make four	
			_ cells.	
-				
2.			cell has half the chromosomes of a	
			_ cell.	
3.	Α		cell has pairs of chromosomes.	
4.			are not identical but have genes for the san	ne trait arranged
	in the same	order are		
5.	Each pair of	:	has one chromosome from t	the mother and
		some from the		
6	In		, the two chromosomes are always ider	atical
0.	····		, the two enfomosomes are always iden	Itical.
7.	During		, two divisions of the nucleus and	the cytoplasm
	occur.			
8.	When a cell	duplicates one	e chromosome, two	are formed.
	vinen a cen	duplicates one		
9.			sis and meiosis, two	are formed
	for each chr	omosome.		
10.	A reproduct	ive cell goes th	rough interphase before beginning	
	-	_	_ I, but not before	II.
11.	Prophase I a	nd Prophase II	are stages in	
Dire	ctions: Answer	each question on th	e lines provided.	
1.	If a male orga	nism has 40 chi	romosomes in each body cell, how many chro	omosomes
	does a female	of the same spe	ecies have in each body cell?	_
		-		
•		1 .		
2.	How many no	omologous pairs	s of chromosomes does the male have?	
3.	How many ch	nromosomes wo	uld be in a sperm cell and in an egg cell?	
4	How many ch	tromosomes wo	uld be in an offspring?	
4.	now many C	nomosomes wo	and be in an onspring	
5.	How many pa	irs of homologo	ous chromosomes would be in an offspring?	

Meiosis I		
Phase	Description	
Prophase I	 Chromosomes that are duplicated during remain sister chromatids. 	
	2	join and form pairs.
	3. The membrane surrounding the nucleus	apart.
Metaphase I	 Homologous chromosome pairs align along the of the cell. 	
	5	fibers attach to each pair.
Anaphase I	6. Pairs of duplicated and are pulled toward opposite ends of the cell.	chromosomes separate
	7	stay together.
Telophase I	8. A nuclear membrane forms around each group of chromosomes. The	
	cytoplasm divides forming	daughter cells.
	9	remain together.

Meiosis II			
Phase	Description		
Prophase II	10. do not duplicate. breaks apart.		
Metaphase II	11. Sister chromatids along the middle of the cell.		
Anaphase II	12. Sister chromatids of each duplicated chromosome are		
Telophase II	 13. A nuclear membrane forms around each set of chromatids, which are again called 14. The cytoplasm divides, and cells form. 15. Each cell has the number of chromosomes as the original cell. 		

Label the diagrams below. Use these choices:

Complete the table by checking the correct column(s) for each description.

Description	Mitosis	Meiosis
10. Involved in the production of gametes		
11. Involved in growth and repair		
12 . Promotes genetic variation in organisms		
13. Consists of one nuclear division		
14. Produces daughter cells that are genetically identical		
15. Involves two sets of nuclear divisions		
16. Produces daughter cells that are not identical		
17. Involves the synapsis of homologous chromosomes		
18. Occurs during asexual reproduction		
19. Results in four haploid gametes		
20. Also called <i>reduction division</i>		