DNA, RNA, & Protein Synthesis

DNA (Deoxyribonucleic Acid)

-DNA are the instructions for proteins shape. (Wrong shape=wrong function)

Organic molecule (a polymer of nucleotides)=Nucleotide -Phosphate Group -Deoxyribose Sugar -Nitrogen Base -The 4 Bases of DNA: -CYTOSINE (single ring) -THYMINE (single ring) -ADENINE (double ring) -GUANINE (double ring)

Located in the chromosomes in the nucleus of cells

Ken Eward/Photo Researchers, Inc.

Nucleotide

Structure of DNA

The same 4 Nitrogenous bases make up the DNA of all organisms. Double ring bases pair with single ring bases to fit like a puzzle:

> <u>Adenine-Thymine</u> <u>Guanine-Cytosine</u>

The helix has uniform width because a single ring (pyrimidine) pairs with a double ring (purine)

Ladder Shape, Double strand, helix twist= Double Helix Model (Watson & Crick) -Two strands of DNA form a twisted ladder. The strands are complementary of each other.

ex: Strand 1= ACACAC Strand 2= TGTGTG

(en Eward/Photo Researchers, Inc.

Watson & Crick's Double helix:

Photo Researchers, Inc.

Studying protein shape (shape determines function. If protein is not made, that function can't be performed

Ladder Shape (Sides & Rungs)

Sugar

Sugar

Sugar

Acid

Acid

♦T-A

G-C

♦C-G

Sides: Phosphoric Acid Sugar Phosphoric Acid **Rungs:** ♦ A-T ♦ T-A **G-C** ♦ C-G

Chromosomes in Nucleus

What is DNA's Function? Hereditary Instructions Chemical code for every trait Blueprint" for making **Proteins**

Chromosome DNA Code:

Genes = Segments of DNA

Hair Color

> Eye Color

DNA Chromosome Code:

AcidAcidSugar-T-A-SugarAcidAcidSugar-G-C-SugarAcidAcidSugar-C-G-Sugar

Triplets= Sets of 3 **Nucleotides** Code for Trait (polypeptides/ proteins)

DNA Chromosome Code:

Like Morse Code: Hair *** *_ ** *_*

= A	· —
в	
С	·
D	
E	•
F	
G	<u> </u>
н	
I	••
J	
ĸ	<u> </u>
L	
M	
N.	
0	
P	
Q	
R	· ·

s		Or DN
Т	—	
U		
٧.		
W		
\times		АТ
Υ.		A-I
Z		
1		CC
2		G-C
3		
4		C-C
5		C-G
6		
7	——…	T-A
8		
9	·	
0		C-G

DNA Replication (copies the genetic information of the cell)

- Every time a cell divides, DNA must first be copied
- Replication is preserving the order of the bases in DNA.
- Chromosomes double in Late Interphase of the Cell Cycle
- In the second second

Steps for DNA Replication:

- **1. DNA untwists**
 - DNA unzips (enzyme: DNA Helicase)
- 3. Exposed bases are paired with Corresponding bases and line up in sets of 3 nucleotides (called triplets or codons)
- 4. DNA reforms (enzyme: DNA Polymerase)
- **5. 2 strands twist into helix**
- DNA serves as a template...Enzymes and other proteins do the actual work
- -Enzymes unzip the helix
- -Free floating nucleotides form hydrogen bonds with the template strand.

RNA

Organic Molecule
 Nucleic Acid
 mRNA=messenger
 rRNA=ribosomal
 tRNA=transfer

--

B. Where is RNA located?

1.mRNA in nucleus & cytoplasm **2.tRNA** only cytoplasm

Rouah. Nuclear pore endoplasmic Nucleolus Nuclei reticulum Ribosome Nuclear membrane Golgi **mRNA** Centr Lysos **mRN** tRNA Smooth Cytop endoplasmic reticulum . Mitochondrion Cell m

B. What is RNA's structure?

Acid Sugar-Base Sugar-Base Acid Sugar-Base Acid Sugar-Base

1. Nucleotides= a. Phosphoric Acid b. Ribose sugar c. Nitrogenous **Bases: Adenine-Uracil Guanine-Cytocine** 2. Single Strand 3. No Twisted helix

Comparison of RNA & DNA:

Acid Sugar- Uracil Acid Sugar-Base Acid Sugar-Base Acid Ribose -Base

RNA

D. What are RNA's functions:

1.*mRNA*= Copies the DNA code Deliveries message to Ribosome Protein **Factories**

Why not send the original DNA code out?

DNA might be damaged!

mRNA components are reused

To copy more messages

Original DNA

mRN

RNA function cont.

Amino

acid

2. tRNA: in cytoplasm Picks up an amino acid "Taxis" the aa to the Ribosome protein **factories**

III. Protein Synthesis

Assembling Proteins from the DNA Instructions

A. Transcription:

- mRNA is copied off of DNA
 In nucleus
- 3. Steps:DNA untwists
- DNA unzips
 RNA codons line
 - up

B. Translation =

Conversion of the message (mRNA Code) Into a protein By the ribosome factories

Summary:

DNA Replication:

 Make duplicate DNA

In nucleus

Copy the chromosomes

Protein Synthesis: 1. Transcrition: Make mRNA From DNA 2. Translation: Make protein Off mRNA code Using amino acids