Name: \qquad Period: \qquad Role(circle one): S F QC PA

What makes an acid unique and how are acids named?
Read This!
A variety of acids are used in foods, industry, and research. Acids are covalently bonded molecules, but when they are put into water they produce ions. One of the ions produced is always H^{+}, which immediately combines with a water molecule to form the hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$. The $\mathrm{H}_{3} \mathrm{O}^{+}$ion is what defines the acidic properties of a substance. Because of their special classification, acids have a naming system different from ionic or other molecular (covalent) compounds.

Model 1 -Binary Acids

Acid	Name of Acid in Aqueous Solution (aq)	Cation (+)*	Anion (-)
HCl	Hydrochloric acid	H^{+}	Cl^{-}
HBr	Hydrobromic acid	H^{+}	S^{2-}
$\mathrm{H}_{2} \mathrm{~S}$	Hydrosulfuric acid		
HF	Hydrofluoric acid		

*Hydrogen ions $\left(\mathrm{H}^{+}\right)$join with water molecules in solution to form hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$. For simplicity, we will represent these as \mathbf{H}^{+}.

1. Complete the cation and anion columns of the table in Model 1. Be careful to show the charges on the ions.
2. Why does hydrosulfuric acid contain two hydrogens?
3. Look at the formulas and names of the binary acids in Model 1.
a. What prefix is used at the beginning of the name for all binary acids?
b. What suffix is used at the end of the name for all binary acids?
4. The prefix "bi-" means "two". Propose a reason that the acids in Model 1 are all referred to as "binary" acids.
5. Write a rule (or set of rules) for naming binary acids.

One way to remember the naming system for binary acids:

Model 2-Ternary Acids (Oxyacids)

Acid	Name of Acid in Aqueous Solution (aq)	Cation (+)*	Polyatomic lon (-)	Polyatomic Anion Name
HClO_{3}	Chloric acid	H^{+}		
$\mathrm{H}_{2} \mathrm{SO}_{3}$	Sulfurous acid			
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid			Sulfate
$\mathrm{H}_{3} \mathrm{PO}_{3}$	Phosphorous acid	H^{+}		Phosphite
$\mathrm{H}_{3} \mathrm{PO}_{4}$	Phosphoric acid		PO_{4}^{3-}	
HNO_{3}	Nitric acid			
HNO_{2}	Nitrous acid		NO_{2}^{1-}	nitrite
$\mathrm{H}_{2} \mathrm{CO}_{3}$	Carbonic acid		$\mathrm{CO}_{3}{ }^{2-}$	

*Hydrogen ions $\left(\mathrm{H}^{+}\right)$join with water molecules in solution to form hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$. For simplicity, we will represent these as H^{+}.

6. Look at the formulas of the ternary acids in Model 2.
a. How are ternary acids different from binary acids in their structure?
b. What number do you think the prefix "ter-" refers to?
7. When ternary acids are mixed with water, ions will form. Fill in the table above with the formulas and names of the anions.
8. Examine the pairs of ternary acids in Model 2 that contain sulfur, phosphorous, and nitrogen. Each pair has one acid that ends in "-ic" and another that ends in "-ous". These endings are related to the name of the polyatomic ion found in the acid ("-ate" or "-ite"). Complete the statements below with the correct acid name ending.

Polyatomic anion ending is "-ate" \rightarrow acid name ending is \qquad
Polyatomic anion ending is "-ite" \rightarrow acid name ending is \qquad
9. If the prefix "hydro-" were used to name a ternary acid, what problem would this create when naming HClO_{3} ?
10. Write a rule for naming ternary acids.
11. Predict the formula for chlorous acid.
12. Circle the acid(s) below that would be named beginning with the prefix "hydro-".

$$
\begin{array}{lllll}
\mathrm{H}_{2} \mathrm{SO}_{3} & \mathrm{HF} & \mathrm{H}_{2} \mathrm{~S} & \mathrm{H}_{2} \mathrm{CO}_{3} & \mathrm{HNO}_{2}
\end{array}
$$

A way to remember the naming rules for ternary acids:

"I ATE SOMETHING ICKY"

"SPRIEE IS DELICIOLS"

Model 3-Halogen Oxyacid Acid Families

Acid	Name of Acid	Cation (+)	Anion (-)	Anion Name
HClO_{4}	Perchloric acid			Perchlorate
HClO_{3}	Chloric acid	$\mathrm{H}_{3} \mathrm{O}^{+}$		
HClO_{2}	Chlorous acid			Chlorite
$\mathrm{HClO}^{\mathrm{HBrO}} 4$	Hypochlorous acid			
HIO_{3}				Perbromate
HFO_{2}				
HIO				

13. Write the formulas of the cations and anions for each acid in the table in Model 3.
14. Consider the names of the oxyacids in Model 3 that contain chlorine. All halogens form similar oxyacids that use the same naming convention. Fill in the names of the halogen oxyacids to complete the table.
15. The table below includes both binary and ternary acis. Using what you have learned in this activity, fill in the missing formula and name for the anion in each acid, and give the formula of the acid.

Acid name	Anion	Anion Name	Acid Formula
Hydroiodic acid			
Chlorous acid			
Hypobromous acid			
Phosphoric acid			
Sulfurous acid			

