1. Answer the following questions about the analysis of iron-containing compounds using potassium permanganate solution.
a. Write the balanced equation in ACID solution for the reaction below:

$$
\begin{aligned}
& \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}{ }^{1-} \rightarrow \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}
\end{aligned}
$$

$$
\begin{aligned}
& 5 \mathrm{Fe}^{+2}+8 \mathrm{H}^{+1}+\mathrm{MnO}_{4}^{-} \rightarrow 5 \mathrm{Fe}^{+3}+\mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

b. To standardize a potassium permanganate solution, a 0.250 g sample of FAS (iron (II) ammonium sulfate hexahydrate; molar mass: 342 g) is dissolved in 25.00 mL distilled water, then acidified with sulfuric acid. The solution is then titrated with 35.00 mL potassium permanganate solution from a burette until a pale persistent purple color is attained. Calculate the molarity of the potassium
permanganate solution.

$$
\begin{aligned}
& \frac{1.46 \times 10^{-4} \mathrm{ml}}{0.0350 L}=0.00418 \mathrm{M} \mathrm{kMncy}
\end{aligned}
$$

c. The standardized potassium permanganate solution is then used to titrate a solution made by dissolving a 0.500 g sample of a mixture of iron (II) sulfate and sodium sulfate in 50.00 mL dilute sulfuric acid. A total of 10.21 mL of potassium permanganate solution is required to reach the pale purple endpoint. What is the mass percent of iron (II) sulfate in the original mixture?

$$
\begin{aligned}
& 0.01021 \mathrm{~L} \times 0.00418 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 5 \times 151.85 \mathrm{Fel}=0.032 \mathrm{~g} \mathrm{e} 50 \mathrm{y} \\
& \frac{0.03 \mathrm{~J}}{0.500 \mathrm{~g}} \times 100=6.48 \%
\end{aligned}
$$

d. Would would the effect, if any, on the value for the reported standard molarity of potassium permanganate if the following errors were made? Explain each of your three answers.
i. Some drops of water remained in the burette after cleaning but before the permanganate solution was added to the burette.

Dilution \rightarrow fewer mules MaO \rightarrow Le Ss FA 5 meedeat to end et \rightarrow lower mochristy of KMady standard.
ii. The student neglected to run some permanganate solution through the tip of the burette before taking the initial reading.
IF "ATR"BムBBLE \rightarrow DELIUVESA VOL MAE WOULD BE LEST TAN ACTUAL READING, APPARENT [EMO] WOUCD BE COCVFR. ie. TEEMT LIKFIT DOK NORE MANU -
iii. The student's lab partner spilled some FAS after weighing it but before titration.

MORE FAT SOLUTION NEEDED FORTINRHINN GIVEN ASSUMHIENN THAT [HAS] ETTTSUQ INF

2. Periodic Relationships
a. Ionization Energies, (kI / mol)

	Na	Mg	Al
FIrst Ionisation Energy	496	738	578
Second Ionization Energy	4,560	1,450	1,820
Third Ionisation Energy	6,917	7,730	2,750

i. The second ionization for each element is greater than the first ionization energy for that element. Explain.
Remove $1 \mathrm{e}^{-}$, repulsion/ shielding decroore, electron cloud shrinks. Valence er closer to núclour, queater Ref syongen at traction (Coulomb's LAW) more energy ing aired to remove $2^{\text {nd }} e^{-}$.
ii. The difference between the first and second ionization energies is much greater for Na than for Mg. Explain.
 $2^{\text {uh electron comes from cove/innen shad unbend }}$ zefers quester requiting more every.
b. Atomic / Ionic Radius, (nm)

${ }_{10} \mathrm{~S}$	${ }_{10} \mathrm{~S}^{2-}$	${ }_{20} \mathrm{Ca}$	${ }_{20} \mathrm{Ca}^{2+}$
0.104	0.184	.197	0.099

i. The radius of ${ }_{16} 5$ is less than the radius of ${ }_{16} 5^{2}$. Explain.

cloud expands
ii. The ${ }_{16} 5^{2-}$ and ${ }_{20} \mathrm{Ca}^{2+}$ are isoelectronic species. However, the radius of ${ }_{16} 5^{2-}$ is greater than the radius of $20 \mathrm{Ca}^{2+}$. Explain.

Bothhawe lame electron-comfigurntum \& shielding, but Ca has 20 protium us. 516 power Greater nubbin change \rightarrow quealen Ref \rightarrow sting an Fore (Coulomb) puls valence shell clares,
3. Answer all four questions about the burning of octane.

$$
\mathrm{C}_{8} \mathrm{H}_{18(\ell)}+\frac{25}{2} \mathrm{O}_{2(\rho)} \rightarrow 8 \mathrm{CO}_{2(\rho)}+9 \mathrm{H}_{2} \mathrm{O}_{(g)}+\text { heat } \quad \text { i } \times 0
$$

The combustion reaction above is the source of the energy produced by the burning of octane in an automobile engine. This reaction is spontaneous at 298 K .
a. Predict the sign of ΔS in the reaction. Explain.
b. Predict the sign of ΔG for this reaction at 298 K . Explain.

$$
\Delta G=\Delta H-T \Delta S \quad \Delta G=- \text { Since } \quad \Delta H=-
$$

If some of the reactants were converted to CO rather than CO_{2}, how would the total amount of energy produced be affected? Explain.
DECREASES.

$$
\begin{aligned}
& \Delta H_{f}^{\circ} \mathrm{CO}_{2}>\Delta H_{f}^{\circ} \mathrm{CO} \text {, So LESS } \\
& \text { EnERGY proverbs. }
\end{aligned}
$$

d. If this reaction were carried out at a temperature greater than 298 K , for which of the three parameters, $\Delta H, \Delta G$, or ΔS, would the change in value have the greatest magnitude? Explain.

$$
\begin{aligned}
& \Delta G=\Delta H-T \Delta S \\
& \text { DH, DS ~ ConsMni } \\
& \text { aver T range } \\
& \text { stacte } \Delta S \text { : multiplied Sc } \\
& \text { Grouter } 7 \text { teams TAS inceares } \\
& \text { \& } \Delta H \text {-TAS will have a lang-a } \\
& \text { change in magnitude, }
\end{aligned}
$$

4. Answer the following questions about a chromium/hydrogen electrochemical cell.
a. Make a labeled sketch of an electrochemical cell using a standard $\mathrm{Cr} / \mathrm{Cr}^{3+}$ half cell connected to a standard hydrogen half-cell. Your labels should include:
i. anode
ii. cathode
iii. chemical components and concentrations) in the chromium half cell
iv. direction of electron flow in the external circuit
v. path for ion migration (ح) $\mathrm{Cr}^{+3}+3 e^{-} \rightarrow \mathrm{Cr} \mathrm{f}^{\circ}=-0,73 \mathrm{~V}$

b. Write the half reactions and the balanced overall equation for this cell.

$$
\begin{aligned}
& \text { Write the half reactions and the balanced overall equation for this cell. } \mathrm{Cr}^{+1} \rightarrow 2 \mathrm{Cr}^{+}+3 \mathrm{He} \\
& \left.2 \mathrm{Cr}^{+3}+3 \mathrm{H}^{-}+2 \mathrm{C}^{-} \rightarrow \mathrm{H}_{2}\right) 3
\end{aligned}
$$

c. Calculate the voltage for this standard cell.

$$
E_{\text {cell }}=F_{\text {car }}-E_{\text {arm }}=0-(-0.73)=
$$

d. Calculate the voltage when the concentration of Cr^{3+} is 0.050 M .

$$
\begin{aligned}
E & =E^{0}-\frac{0.0592}{n} \log \frac{[6 \mathrm{r}+]^{2}}{[1+]^{6}} \\
& =0.73 \mathrm{~V}-\frac{0.0592}{6} \log \frac{6.05)^{2}}{(1)^{6}} \\
& =0.76 \mathrm{~V}
\end{aligned}
$$

5. Methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, is an organic base, accepting a proton from water to form the methylammonium ion. The value of $\mathrm{K}_{\text {eq }}$ for this system is 4.0×10^{-4} at 298 K .
a. Write the chemical equation for the equilibrium as described above.

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+1}+\mathrm{OH}-
$$

b. Calculate the concentration of hydroxide ions in a 0.25 M solution of methylamine.

$$
50 / 0 \text { rule }
$$

$$
\left.K_{3}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right][\mathrm{OH}}{-}\right] \quad \frac{x^{2}}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}=9 \times 10^{-4} \quad x=[\mathrm{OH}-0.2 \Gamma-x .010 \mathrm{M}
$$

c. How is the equilibrium affected when solid NaOH is added to a solution of methylamine? Calculate the $\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right.$] when $0.020 \mathrm{~mol} \mathrm{OH}^{1}$ - is added to $500 . \mathrm{mL}$ of 0.25 M methylamine. $\mathrm{CH}_{3} \mathrm{NH}_{2}$. (Assume no change in volume:)

SHIFT LEFT (LEST IONS RATION)

$$
\left[\left(\mathrm{H}_{2} \mathrm{NH}_{3}^{+1}\right]=x=x 0.0023 \mathrm{M}\right.
$$

d. A buffer solution is prepared that is $0.20 \mathrm{M} \mathrm{in}_{\mathrm{CH}}^{3} \mathrm{NH}_{3}{ }^{1+}$ and 0.25 M in $\mathrm{CH}_{3} \mathrm{NH}_{2}$. Calculate the pH of this solution.

$$
\rho H=\rho K a+\log \frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}+1\right]}=10,6+\log \left(\frac{\mathrm{K}_{a}=\frac{\mathrm{Ka}}{\mathrm{~K}_{6}}}{20}\right)=
$$

e. Calculate the number of moles of H^{1+} that must be added to 200 mL of the solution in part (d) in order to change the pH to 10.00 .

$$
\begin{aligned}
& 10-10.7=\log \frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}{\left(2 \mathrm{CH}_{3} \mathrm{NH}_{7}^{7}\right]} \\
& \frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}{\left[\mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right]}=0.20 \\
& \ln _{200 \mathrm{C}} \\
& \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+} \quad-\frac{B}{A}=0.2 \quad \mathrm{~B}+\mathrm{A}=0.04 \\
& B=0.2 A \quad 0.7 A=A=0.09 \\
& \text { c) } \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} \\
& 0.04 \mathrm{M} \\
& \text { I. } 0.75 \mathrm{M} \\
& A=0,075 \\
& B=0.015 \mathrm{nd} \\
& \text { Add } 0.035 \mathrm{nol} \mid \mathrm{t}^{+1} \\
& 0.25-4 \\
& \begin{array}{l}
4 \times 10^{-4}=\frac{4(0.04+x)}{0.25-x} \text { so ole } x=0,0075 \quad 10 \% \text { No op! } \\
\text { socwar } x=0,0023
\end{array}
\end{aligned}
$$

6. Refer to the reaction and data table below:

$$
2 \mathrm{~A}_{(g)}+\mathrm{B}_{(g)} \rightarrow \mathrm{C}_{(g)}
$$

	Initial concentration mol Le	Initial concentration mol L-1	Initial rate of formation of C
Trial	$[\mathrm{A}]$	$[\mathrm{B}]$	$\mathrm{mol} \mathrm{L}^{-1} \mathrm{sec}^{-1}$
I	0.40	0.20	8.0×10^{-4}
II	0.80	0.40	1.6×10^{-3}
III	0.80	0.80	3.2×10^{-3}
IV	0.60	0.60	2.4×10^{-3}
V	0.30	$?$	4.0×10^{-4}

a. Write the rate law for the reaction above in the form Rate $=k[A] \times[B] y$ including numerical values for x and y. Explain how you determined the values for exponents x and y.
$R=K[A]^{*}[B]^{y}$. constant A, Ridiniled, Duse doubler

$$
\begin{aligned}
& \frac{1.6 \times 10^{-3}}{8 \times 10^{-4}}=\frac{K}{K}\left(\frac{0.8}{0.0}\right)^{X}\left(\frac{0.4}{0.2}\right)^{\prime} \\
& \text { so } k=1 \\
& \text { rice no contain. B, strip } \\
& 2 \text { rial af divide. } \\
& \left.2=2(2)^{x} 2^{x=1} \quad x=0 \quad R=K[A]^{0}[B]^{\prime}\right] \times R=K[R]^{\prime} \\
& \text { b. Calculate the specific rate constant, } k \text {. Specify the units for } k \text {. }
\end{aligned}
$$

$$
K=\frac{R}{[B]^{\prime}}=\frac{8.0 \times 10^{-4} \frac{1.1}{2.5}}{0.20 \frac{\mathrm{~m}}{\mathrm{~K}}}=0.0040 \frac{1}{5}
$$

c. Calculate the rate of formation of C in trial IV after [A] has decreased to $0,30 \mathrm{M}$.

d. Calculate the initial concentration of reactant B in trial V .

$$
\begin{aligned}
& \text { Calculate the initial concentration of reactant B in trial V. } \\
& \qquad[B]^{\prime}=\frac{R}{K}=\frac{4 \times 10^{-4} \frac{10,1}{x}}{0.0040 \frac{1}{x}}=0.10 \mathrm{M}
\end{aligned}
$$

e. If the temperature were raised by $10^{\circ} \mathrm{C}$ for any trial, what would be the effect on the initial rate of formation for C ? Explain.
Instal Rate would increase. In general. ancmoreate of $10^{\circ} \mathrm{C}$ a doubles reaction ate for wary reactor, since...

$$
K=A e^{-\frac{E_{a}}{R T} \quad \text { bigger } T} \begin{aligned}
& \text { smaller reg. exponent } \\
& \text { or wore rit exponent } \\
& \text { a greater } K \text {. }
\end{aligned}
$$

7. Use principles of the Kinetic Molecular Theory to respond to the questions below.
a. In the space below, complete the sketches of two pistons to represent samples containing 1.60 g of the gas specified in 0.5 liters at 298 K . Each piston should be similar to the example shown.

b. Compare the average kinetic energy of each sample. Explain.

$$
\text { SAME T } \rightarrow \text { same arg. KE }
$$

c. Compare the average molecular velocity for each sample. Explain.

Since both have the same avg KE, O 2 molecules have a higher velocity due to their lower molar mass.
d. Compare the pressure for each sample. Explain.

At the same temperature and volume, since their are more moles of O 2 gas , the pressure in the oxygen piston will be higher.

8. Using principles of chemical bonding and/or intermolecular forces, explain each of the following.
a. The normal boiling point of iodine, l_{2}, is greater than the normal boiling point of chlorine, Cl_{2}.

Both have only disper rich IMF
Ir \rightarrow greaten nolan hour a more electron \rightarrow
more polarizable \rightarrow greater direction
SPONGES DUE = HIGHER UBS.
b. Both $\mathrm{Ag}(s)$ and molten Ag are excellent conductors of electricity. However, silver nitrate, AgNO_{3}, is a good conductor only when melted or dissolved in water. As a solid, it is a poor conductor of electricity.

Ag \rightarrow metallic bonding \rightarrow sea of mobil electron can cary eledricity in same sate.
$\mathrm{AgNO}_{3} \rightarrow$ Ionic bonding \rightarrow ions in solid it fixed poritue melt/disralue \rightarrow ions fee to move et carly electricity.
c. The normal boiling point of $\mathrm{H}_{2} \mathrm{O}$ is higher than the normal boiling point of $\mathrm{H}_{2} \mathrm{~S}$ even though the molar mass of $\mathrm{H}_{2} \mathrm{O}$ is less than the molar mass of $\mathrm{H}_{2} \mathrm{~S}$.
$\mathrm{H}_{2} \mathrm{O} \rightarrow$ dispersion, dipole, H -bendigo
$\mathrm{H}_{2} \mathrm{~S} \rightarrow$ dispersion, depute
while Hor hat greaten elise enrian, Hoo hap hydrogen binds which are strong.
d. Arsenic, As, reacts with the metal sodium, Na , to form $\mathrm{Na}_{3} \mathrm{As}$. Arsenic reacts with the nonmetal chlorine, Cl_{2}, to form AsCl_{3}.
Sodium has a lumen IE than As, As great E:A.
As hat greater electronegatuing thanNa. As IE >C1
cl has remote ebctonegotiong pram As. CI rat $>$ As
therefore

$\rightarrow \mathrm{Na}_{3} \mathrm{~A}_{5}$

