AP Chemistry Unit 10 Acids and Bases 1 Problem Sets.

1	2
2. Differentiate between the terms strength and concentration as they apply to acids and bases. When is HCI strong? Weak? Concentrated? Dilute?	26. The following are representations of acid-base reactions: +
	a. Label each of the species in both equations as an acid or a base and explain your answers.
3	the second secon
16.17 (a) Give the conjugate base of the following Brønsted–Lowry acids: (i) HlO ₃ , (ii) NH ₄ ¹ . (b) Give the conjugate acid of the following Brønsted–Lowry bases: (i) O ²⁻ , (ii) H ₂ PO ₄ ⁻ .	 37. For each of the following aqueous reactions, identify the acid. the base, the conjugate base, and the conjugate acid. a. H₂O + H₂CO₃ H₃O⁺ + HCO₃⁻ b. C₅H₅NH⁺ + H₂O C₅H₅N + H₃O⁺ c. HCO₃⁻ + C₅H₅NH⁺ H₂CO₃ + C₅H₅N
5	6
 35. Write balanced equations that describe the following reactions. a. the dissociation of perchloric acid in water b. the dissociation of propanoic acid (CH₃CH₂CO₂H) in water c. the dissociation of ammonium ion in water 	 5. Consider the reaction of acetic acid in water: HC₂H₃O₂ (aq) + H₂O (l) ←→ C₂H₃O₂ (aq) + H₂O⁺ (aq) Keq = 1.8 x 10⁻⁵ a) Which two bases are competing for the proton? b) Which is the stronger base? c) In light of your answer to (b), why do we classify the acetate ion as a weak base? Use an appropriate reaction to justify your answer.
7	8
16.2 The following diagrams represent aqueous solutions of two monoprotic acids, HA (A = X or Y). The water molecules have been omitted for clarity. (a) Which is the stronger acid, HX or HY? (b) Which is the stronger base, X or Y? (c) If you mix equal concentrations of HX and NaY, will the equilibrium HX(aq) + Y - (aq) \implies HY(aq) + X - (aq) lie mostly to the right (K _c > 1) or to the left (K _c < 1)? [Section 16.2] HX HY HY	7. Anions containing hydrogen (for example HCO3 and H2PO4) usually show amphoteric behavior. Write equations illustrating the amphoterism of these two anions.
9	10

47.	Values of K_{w} as	a function	of temperature a	re as follows:

Temperature (°C)	K.
0	1.14×10^{-15}
25	1.00×10^{-14}
35	2.09×10^{-14}
40.	2.92×10^{-14}
50.	5.47×10^{-14}

- a. Is the autoionization of water exothermic or endothermic?
- b. Calculate [H+] and [OH-] in a neutral solution at 50.°C.

- 45. Calculate the [OH-] of each of the following solutions at 25°C. Identify each solution as neutral, acidic, or basic.
 - a. $[H^+] = 1.0 \times 10^{-7} M$ c. $[H^+] = 12 M$
 - b. $[H^+] = 8.3 \times 10^{-16} M$ d. $[H^+] = 5.4 \times 10^{-5} M$
- 46. Calculate the [H⁺] of each of the following solutions at 25°C. Identify each solution as neutral, acidic, or basic.
 - a. $[OH^-] = 1.5 M$
- c. $[OH^-] = 1.0 \times 10^{-7} M$
- **b.** $[OH^{-}] = 3.6 \times 10^{-15} M$ **d.** $[OH^{-}] = 7.3 \times 10^{-4} M$

11

- 12. Answer the following questions about pH
 - a. What is meant by pH?
 - b. True or false: A strong acid solution always has a lower pH than a weak acid solution. Explain.
 - c. Can the pH of a solution ever be negative? Explain.

12

51. Fill in the missing information in the following table.

Contract Contraction of the Con-		рН	рОН	[H+]	[OH-]	Acidic, Basic, or Neutral?
and the same of	Solution a	6.88				
	Solution b				$8.4 \times 10^{-14} M$	
	Solution c		3.11			
-	Solution d			$1.0 \times 10^{-7} M$	-	

13

Perform the following calculations regarding pH:

- a. The $[H^+]$ given a concentration of $[OH^-]$ of 1.44 x 10^{-9} M.
- b. The pH of a solution with $[H^+] = 1.0 \times 10^{-2} M$.
- c. The pH of a solution with $[OH^{-}] = 1.93 \times 10^{-6} M$.
- d. The pH of a solution with a pOH of 9.47.

54. The pOH of a sample of baking soda dissolved in water is 5.74 at 25°C. Calculate the pH, [H+], and [OH-] for this sample. Is the solution acidic or basic?

14

1. Calculate the pH of a 0.389 M solution of HClO ₃ .	 What are the major species present in a 0.250 M solution of each of the following acids? Calculate the pH in each. a. HClO₄ b. HNO₃
3	4
3. Calculate the pH of each of the following solutions of a strong acid in water: a. 1 x 10 ⁻¹¹ M HC1 b. 5.0 M HC1	4. Find the pH of a 0.25 M solution of lactic acid, $HC_3H_5O_3$ ($K_a=8.3 \times 10^{-4}$).
5	6
5. Using the table of weak acids and weak bases, order the following from the weakest to the strongest acid: H ₂ O, HNO ₃ , HOCl, NH ₄ ⁺	6. The pH of a 0.0100 M solution of cyanic acid (HOCN) is 2.77 at 25°C. Calculate its K ₄ .
7	8
7. What are the major species present in 0.10M of each of the following solutions? Calculate the pH of each of these solutions (use the table for K _a values) a. HNO ₂ b. HC ₂ H ₃ O ₂	8. A solution with a total volume of 250.0 mL is prepared by diluting 20.0 mL of glacial acetic acid with water. Calculate the [H ⁺] and the pH of this solution. Assume that glacial acetic acid is pure liquid acetic acid with a density of 1.05 g/mL.
9	10
9. Monochloroacetic acid, HC ₂ H ₂ ClO ₂ , is a skin irritant that is used in "chemical peels" intended to remove the top layer of dead skin from the face and ultimately improve the complexion. The value for the K ₃ of monochloroacetic acid is 1.35 x 10 ⁻³ . Calculate the pH of a 0.10 M solution.	10. A solution of formic acid (HCOOH, $K_a = 1.8 \times 10^{-4}$) has a pH of 2.70. Calculate the initial concentration of formic acid in this solution.
11	12
11. Calculate the percent dissociation in a 5.0 M solution of formic acid, $HCHO_2$ ($K_a = 1.8 \times 10^{-4}$).	12. A 0.15 M solution of a weak acid is 3.0% dissociated. Calculate K _a .
13	14
13. Calculate the pH of a mixture of 100.0 mL of 0.10 M HNO ₃ and 200.0 mL of 0.30 M HCl.	14. A solution is prepared by adding 50.0 mL of 0.050 M HCl to 150.0 mL of 0.10 M HNO ₃ . Find its pH.
15	16
15. Calculate the pH and concentration of all species given a mixture of 0.10 M HC ₃ H ₅ O ₂ (K_a = 1.3 x 10 ⁻⁵) and 0.10 M HCN (K_a = 6.2 x 10 ⁻¹⁰).	16. Calculate the pH of a solution that contains 1.0 M HF and 1.0 M HOC ₆ H ₅ . Also calculate the concentration of OC ₆ H ₅ at equilibrium.
17	18
17. Write out the stepwise K _a reactions for citric acid (H ₃ C ₆ H ₅ O ₇), a triprotic acid.	18. Calculate the pH and concentration of all species for 0.35 M H ₃ BO ₃ (given the following: $(Ka_1 = 5.4 \times 10^{-10}, Ka_2 = 1.8 \times 10^{-13}, Ka_3 = 1.6 \times 10^{-14})$

1	2
1. Calculate the pH of a 0.40 M solution of sodium hydroxide.	2. Calculate the pH of a 0.40 M solution of barium hydroxide.
3	4

4. Calculate the concentration of an aqueous $Sr(OH)_2$ solution that has a pH = 10.50.
6
 6. Use the table of weak acids and weak bases to help answer the following questions: a. Which is the stronger base, NO₃- or NH₃? b. Which is the stronger base, H₂O or NH₃? c. Which is the stronger base, OH- or NH₃? d. Which is the stronger base, CH₃NH₂ or NH₃?
8
8. Calculate [OH ⁻], [H ⁺], and the pH of 0.20 M solutions of each of the following amines: a. Triethylamine [(C ₂ H ₅) ₃ N, K _b = 4.0 x 10 ⁻⁴] b. Hydroxylamine [HONH ₂ , K _b = 1.1 x 10 ⁻⁸]
10
10. A weak base, B, has a Kb of 4.46 x 10 ⁻¹⁰ . A solution with an unknown initial concentration is tested, and found to have a pH of 8.39. Determine the initial concentration of B.

2

1. Are solutions of the following salts acidic, basic, or neutral? For those that are not neutral, write balanced chemical equations for the reactions causing the salt to be acidic or basic. If needed (both ions could contribute to pH), the relative K _a or K _b values are in tables for weak acids and bases. a. NaNO ₃ b. NaNO ₂ c. C ₅ H ₅ NHClO ₄ d. NH ₄ NO ₂ e. KOCl f. NH ₄ OCl	2. For each: (A) predict the pH (B) write the equation for hydrolysis if it hydrolyzes (C) calculate pH. a. 0.50 M solution of NaNO3. b. 0.50 M solution of NH ₄ ClO ₄ (K _b NH ₃ = 1.8 x 10 ⁻⁵). c. 0.50 M solution of KCN (K _a HCN = 1.6 x 10 ⁻¹⁰). d. 0.50 M solution of LiHSO ₃ (For H ₂ SO ₃ , Ka ₁ = 1.4 x 10 ⁻² , Ka ₂ = 6.3 x 10 ⁻⁸) e. 0.50 M solution of AlBr ₃ (K _a for Al(H ₂ O) ₆ ³⁺ is 1.4 x 10 ⁻⁵).
	A . The state of the state o
3. Papervine hydrochloride (abbreviated papH+Cl-; molar mass 378.85 g/mol) is a drug that belongs to a group of medicines called vasodilators, which cause blood vessels to expand, thereby increasing blood flow. The drug is the conjugate acid of the weak base papaverine (abbreviated pap; K _b = 8.33 x 10 ⁻⁹ at 35.0°C). Calculate the pH of a 30.0-mg/mL aqueous dose of papH+Cl-prepared at 35.0°C, where K _w at 35.0°C is 2.1 x 10 ⁻¹⁴ .	4. Consider a solution of an unknown salt having the general formulas BHCl, where B is one of the weak bases on your table. A 0.10 M solution of the unknown salt has a pH of 5.82. What is the weak base that was used?
5	6
Lactic acid is a weak acid found in milk. Its calcium salt is a source of calcium for growing animals. A saturated solution of this salt, which can be represented as $Ca(Lact)_2$ has $[Ca^{2+}] = 0.26$ M and a pH of 8.40. Assuming the salt is completely dissociated, calculate K_a of lactic acid.	Sodium hypochlorite, sold as chlorine bleach, is potentially dangerous because of the basicity of ClO, the active ingredient. What is the [OH] in an aqueous solution that is 6.5% NaClO by mass? What is the pH of the solution? Assume the solution has a density of 1.0 g/mL
7	8
An unknown salt is either NaF, NaCl, or NaOCl. When 0.050 mol of the salt is dissolved in water to form a 0.500 L solution, the pH of the solution is 8.08. What is the identity of the salt?	
Ment of the state	10
11	12

AP Chemistry Unit 10 Acids and Bases II Problem Sets.

Problem Set 1 Buffers

1	2
17.19 Explain why a mixture of CH ₃ COOH and CH ₃ COONa can act as a buffer while a mixture of HCl and NaCl cannot.	 A certain buffer is made by dissolving NaHCO₃ and Na₂CO₃ in some water. Write equations to show how this buffer neutralizes added H⁺ and OH⁻.
3	4
 21. Calculate the pH of each of the following solutions. a. 0.100 M propanoic acid (HC₃H₅O₂, K_a = 1.3 × 10⁻⁵) b. 0.100 M sodium propanoate (NaC₃H₅O₂) c. pure H₂O d. a mixture containing 0.100 M HC₃H₅O₂ and 0.100 M NaC₃H₅O₂ 	 35. Calculate the pH of each of the following buffered solutions. a. 0.10 M acetic acid/0.25 M sodium acetate b. 0.25 M acetic acid/0.10 M sodium acetate c. 0.080 M acetic acid/0.20 M sodium acetate d. 0.20 M acetic acid/0.080 M sodium acetate
 31. Calculate the pH of a solution that is 1.00 M HNO₂ and 1.00 M NaNO₂. 33. Calculate the pH after 0.10 mole of NaOH is added to 1.00 L of the solution in Exercise 31, and calculate the pH after 0.20 mole of HCl is added to 1.00 L of the solution in Exercise 31. 	39. Calculate the pH after 0.010 mole of gaseous HCl is added to 250.0 mL of each of the following buffered solutions. a. 0.050 M NH ₃ /0.15 M NH ₄ Cl b. 0.50 M NH ₃ /1.50 M NH ₄ Cl Do the two original buffered solutions differ in their pH or their capacity? What advantage is there in having a buffer with a greater capacity?
7	8
37. Calculate the pH of a buffered solution prepared by dissolving 21.5 g benzoic acid (HC ₇ H ₅ O ₂) and 37.7 g sodium benzoate in 200.0 mL of solution.	48. Consider the bases in Table 14.3. Which base would be the best choice for preparing a pH = 5.00 buffer? Explain how to make 1.0 L of this buffer.
9	10
47. Consider the acids in Table 14.2. Which acid would be the best choice for preparing a pH = 7.00 buffer? Explain how to make 1.0 L of this buffer.	41. Calculate the mass of sodium acetate that must be added to 500.0 mL of 0.200 <i>M</i> acetic acid to form a pH = 5.00 buffer solution.
11	12
44. Calculate the ratio [NH ₃]/[NH ₄ ⁺] in ammonia/ammonium chloride buffered solutions with the following pH values:	50. Calculate the pH of a solution that is $0.20 M$ HOCl and $0.90 M$ KOCl. In order for this buffer to have pH = p K_a , would you add HCl or NaOH? What quantity (moles) of which reagent would you add to $1.0 L$ of the original buffer so that the result-
a. pH = 9.00 c. pH = 10.00 b. pH = 8.80 d. pH = 9.60	ing solution has $pH = pK_a$?
b. pH = 8.80 d. pH = 9.60	ing solution has $pH = pK_a$?
b. pH = 8.80 d. pH = 9.60	ing solution has $pH = pK_a$?

Problem Set 2 Buffers 2

|--|

 54. Calculate the number of moles of HCl(g) that must be added to 1.0 L of 1.0 M NaC₂H₃O₂ to produce a solution buffered at each pH. a. pH = pK_a b. pH = 4.20 c. pH = 5.00 	 40. An aqueous solution contains dissolved C₆H₅NH₃Cl and C₆H₅NH₂. The concentration of C₆H₅NH₂ is 0.50 <i>M</i> and pH is 4.20. a. Calculate the concentration of C₆H₅NH₃⁺ in this buffer
	solution.
	b. Calculate the pH after 4.0 g NaOH(s) is added to 1.0 L of this solution. (Neglect any volume change.)
### ##################################	
87. Phosphate buffers are important in regulating the pH of intracellular fluids at pH values generally between 7.1 and 7.2.	85. You have the following reagents on hand:
a. What is the concentration ratio of $H_2PO_4^-$ to HPO_4^{2-} in intracellular fluid at pH = 7.15?	Solids (pK₃ of Acid Form Is Given) Solutions
$H_2PO_4^{-}(aq) \Longrightarrow HPO_4^{2-}(aq) + H^+(aq) $ $K_a = 6.2 \times 10^{-8}$	Benzoic acid (4.19) 5.0 M HCl
b. Why is a buffer composed of H ₃ PO ₄ and H ₂ PO ₄ ⁻ ineffective in buffering the pH of intracellular fluid?	Sodium acetate (4.74) Potassium fluoride (3.14) Ammonium chloride (9.26) 1.0 M acetic acid (4.74) 2.6 M NaOH 1.0 M HOCI (7.46)
$H_3PO_4(aq) \rightleftharpoons H_2PO_4(aq) + H^+(aq)$ $K_a = 7.5 \times 10^{-3}$	
	What combinations of reagents would you use to prepare buf-
	fers at the following pH values? a. 3.0 b. 4.0 c. 5.0 d. 7.0 e. 9.0
Service Service 5 of the service and the service servi	6
17.21 (a) Calculate the pH of a buffer that is 0.12 M in lactic acid and 0.11 M in sodium lactate. (b) Calculate the pH of a buffer formed by mixing 85 mL of 0.13 M lactic acid with 95 mL of 0.15 M sodium lactate.	17.23 A buffer is prepared by adding 20.0 g of acetic acid (CH ₃ COOH) and 20.0 g of sodium acetate (CH ₃ COONa) to enough water to form 2.00 L of solution. (a) Determine the pH of the buffer. (b) Write the complete ionic equation for the reaction that occurs when a few drops of hydrochloric acid are added to the buffer. (c) Write the complete ionic equation for the reaction that occurs when a few drops of sodium hydroxide solution are added to the buffer.
7	8
17.26 How many grams of sodium lactate [CH ₃ CH(OH)COONa or NaC ₃ H ₅ O ₃] should be added to 1.00 L of 0.150 M lactic acid [CH ₃ CH(OH)COOH or HC ₃ H ₅ O ₃] to form a buffer solution with pH 4.00? Assume that no volume change occurs when the sodium lactate is added.	following 0.10 M solutions available: HCOOH, CH ₃ COOH, H ₃ PO ₄ , HCOONa, CH ₃ COONa, and
9	10
17.80 Two buffers are prepared by adding an equal number of moles of formic acid (HCOOH) and sodium formate (HCOONa) to enough water to make 1.00 L of solution. Buffer A is prepared using 1.00 mol each of formic acid and sodium formate. Buffer B is prepared by using 0.010 mol of each. (a) Calculate the pH of each buffer, and explain why they are equal. (b) Which buffer will have the greater buffer capacity? Explain. (c) Calculate the change in pH for each buffer upon the addition of 1.0 mL of 1.00 M HCl. (d) Calculate the change in pH for	[17.88] Suppose you want to do a physiological experiment that calls for a pH 6.5 buffer. You find that the organism with which you are working is not sensitive to the weak acid H_2X ($K_{a1} = 2 \times 10^{-2}$; $K_{a2} = 5.0 \times 10^{-7}$) or its sodium salts. You have available a 1.0 M solution of this acid and a 1.0 M solution of NaOH. How much of the NaOH solution should be added to 1.0 L of the acid to give a buffer at pH 6.50? (Ignore any volume change.)

diagram

1

The following drawings represent solutions at various stages of the titration of a weak acid, HA, with NaOH.

2

Match the following descriptions of titration curves with the

c)pyridine titrated with nitric acid	b)the region with maximum buffering c)pH = pK _a d)pH depends only on [B] e)pH depends only on [BH ⁺] f)pH depends only on amount of excess strong acid
7	8
Assume that 30.0 mL of a 0.10 M solution of a weak base B that accepts one proton is titrated with a 0.10 M solution of the monoprotic strong acid HX.	50.00 mL of an unknown concentration of HNO ₃ were titrated according to the curve below. Determine its concentration through the results.
a)How many moles of HX have been added at the equivalence point?	12.00 Strong Acid Titration 50.00 mL of 7 M HINO3
b) What is the predominant form of B at the equivalence point?	8.00
c)How can the pH be determined at the equivalence point?	五 6.00
d)Which indicator, phenolphthalein ($K_a = 10^{-8}$) or methyl red ($K_a = 10^{-5}$), is likely to be the better indicator for this titration?	0.00
9	10
A 0.250 M solution of weak acid, HA, is titrated with 0.150 M KOH, generating the following titration curve. Determine the Ka of the weak acid. Titration of a weak acid with a strong base 10 after equivalence point g 10 g 10 20 30 Volume of titrant [mt]	Calculate the initial pH, the pH at the halfway point, the pH at the equivalence point, and the pH after the addition of 250.0 mL of titrant. 100.0 mL of 0.10 M HC ₇ H ₅ O ₂ (K _a = 6.4 x 10 ⁻⁵) titrated by 0.10 M NaOH Initial pH pH at halfway point pH at equivalence point pH after 250.0 mL of titrant
11	<u> </u>
Calculate the initial pH, the pH at the halfway point, the pH at the equivalence point, and the pH after the addition of 250.0 mL of titrant.	Calculate the initial pH, the pH at the halfway point, the pH at the equivalence point, and the pH after the addition of 250.0 mL of titrant.
$100.0 \text{ mL of } 0.10 \text{ M C}_2\text{H}_5\text{NH}_2 \text{ (K}_b = 5.6 \text{ x } 10^{-4}\text{) titrated by } 0.20 \text{ M HNO}_3$	100.0 mL of 0.50 M NaOH titrated by 0.25 M HCl
<u>nitial pH</u>	Initial pH pH at halfway point pH at equivalence point

4.

pH at halfway point
pH at equivalence point
pH after 250.0 mL of titrant

Sketch the titration curve based on your points.

pH after 250.0 mL of titrant

Sketch the titration curve based on your points.