Dafa: Conclusions -> If needed, observe under UV light. ## Calculating R_f The retention factor (R_f) is used to compare how far different spot travel up the paper. The R_f is calculated as follows: N Note that all measurements taken from the spot's starting point – the pencil line. We divide the distance a spot traveled from its starting point, by the maximum distance it could have traveled, from the starting point to the solvent front. All R_f values will be between 0 and 1. If a spot did not move from the pencil line, it will have an R_f , of zero, such as spot A in figure (2) – this spot is very attracted to the paper. If a spot moves with the solvent front, it will have an R_f of 1, such as spot B which is not very attracted to the paper. For spot C, the distance from the pencil line to the spot is 1.0 cm, from pencil line to the solvent front is 4.0 cm, making the R_f = 0.25. ## **Comparing Different Samples** The retention factor (R_f) is used to determine if spots from different samples are the same compound. In the figure to the right, four samples (D-G) were developed with paper chromatography. Samples D & F were pure substances —one spot on the chromatography papers indicates that they contained only one dye. Sample E contained two dyes and sample G contained three dyes. If spots have similar color and similar R_f , they are probably the same dye. The dye in D is likely the same as dye with the lowest Rf in G. The spot with the highest R_f in E and G are also probably the same dye. Currently, there are only 7 dyes approved for use in food by the Food and Drug Administration. | Type of candy used: | | | • | | | | |------------------------|---|---|--|---------------------------------------|----------------|--| | 2. In the tables write | atography papers and label the color of
the color of each spot, the distance the
er. If the source only contained one dye | e spot traveled a | and the calculate | ed R _f . Write a sep | parate entry | | | | | | | SKITTLE | 5 | | | | | Distance from pencil line to solvent front: | | | | | | | | 3Kittle Color | Color of Spot | Distance spot
traveled | R_{f} | | | | | Ĭ. | 4 | X X | XX | | | | : 31 | | | | red | | | | | | | : | | | Name of the second seco | FOOD | DYE | | | | | Distance fron | Distance from pencil line to solvent front: | | | | | | | Dye Source | Color of Spot | Distance spot
traveled | R _f | | | | | Blue Food
Coloring | | | | | | | | Green Food
Coloring | | | | | | | | 1 - | | | , | | | | | | | | | | | | | Yellow Food | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | X | XXX | | | | | | | | red | Red Food
Coloring | | | | | | Λ | - | | | |-----|------------|------|-----| | 11 | -100 | CIA | ~ < | | Con | CIN | 3108 | | | 00. | U , | - | | | Name | | |------|--| |------|--| 1. If you let the experiment run for less time, removing the chromatography paper from the beaker when the solvent from was 6 cm from the top of the paper, what would be the likely result? Would any problems arise? 2. Based on your observations, classify your spots as mixtures or pure substances. (Did they contain one dye or more than one dye?) blue food coloring _____ red food coloring _____ green food coloring _____ candy spot _____ yellow food coloring _____ 3. Spots with the same color and similar Rfs are likely to be the same dye. Were any dyes used in your candy also used to make one or more food colorings? Yes or No _______ Explain in detail how you came to your conclusion. Cite specific colors <u>and</u> Rfs from your data sheet to support your answer. 4. Identify Polarity of each dye i justify your determination