page 1

1985

At 25°C the solubility product constant, K_{sp} , for strontium sulfate, SrSO₄, is 7.6 × 10⁻⁷. The solubility product constant for strontium fluoride, SrF₂, is 7.9 × 10⁻¹⁰.

- (a) What is the molar solubility of $SrSO_4$ in pure water at $25^{\circ}C$?
- (b) What is the molar solubility of SrF_2 in pure water at 25°C?
- (c) An aqueous solution of $Sr(NO_3)_2$ is added slowly to 1.0 liter of a well-stirred solution containing 0.020 mole F⁻ and 0.10 mole $SO_4^{2^-}$ at 25°C. (You may assume that the added $Sr(NO_3)_2$ solution does not materially affect the total volume of the system.)
 - 1. Which salt precipitates first?
 - 2. What is the concentration of strontium ion, Sr^{2+} , in the solution when the first precipitate begins to form?
- (d) As more Sr(NO₃)₂ is added to the mixture in (c) a second precipitate begins to form. At that stage, what percent of the anion of the first precipitate remains in solution?

1990

The solubility of iron(II) hydroxide, Fe(OH)₂, is 1.43×10^{-3} gram per liter at 25 °C.

- (a) Write a balanced equation for the solubility equilibrium.
- (b) Write the expression for the solubility product constant, K_{sp} , and calculate its value.
- (c) Calculate the pH of the saturated solution of $Fe(OH)_2$ at 25 °C.
- (d) A 50.0-milliliter sample of 3.00×10^{-3} molar FeSO₄ solution is added to 50.0 milliliters of 4.00×10^{-6} molar NaOH solution. Does a precipitate of Fe(OH)₂ form? Explain and show calculations to support your answer.

1994

$$MgF_2(s) \hookrightarrow Mg^{2+}(aq) + 2 F^{-}(aq)$$

In a saturated solution of MgF₂ at 18°C, the concentration of Mg²⁺ is 1.21×10^{-3} molar. The equilibrium is represented by the equation above.

- (a) Write the expression for the solubility-product constant, K_{sp} , and calculate its value at 18° C.
- (b) Calculate the equilibrium concentration of Mg²⁺ in 1.000 liter of saturated MgF₂ solution at 18°C to which 0.100 mole of solid KF has been added. The KF dissolves completely. Assume the volume change is negligible.
- (c) Predict whether a precipitate of MgF₂ will form when 100.0 milliliters of a 3.00×10^{-3} molar Mg(NO₃)₂ solution is mixed with 200.0 milliliters of a 2.00×10^{-3} molar NaF solution at 18°C. Calculations to support your prediction must be shown.
- (d) At 27°C the concentration of Mg^{2+} in a saturated solution of MgF_2 is 1.17×10^{-3} molar. Is the dissolving of MgF_2 in water an endothermic or an exothermic process? Give an explanation to support your conclusion.

1998

Solve the following problem related to the solubility equilibria of some metal hydroxides in aqueous solution.

(a) The solubility of Cu(OH)₂ is 1.72×10^{-6} gram per 100. milliliters of solution at 25°C.

- (i) Write the balanced chemical equation for the dissociation of Cu(OH)₂(*s*) in aqueous solution.
- (ii) Calculate the solubility (in moles per liter) of Cu(OH)₂ at 25 °C.
- (iii) Calculate the value of the solubility-product constant, K_{sp} , for Cu(OH)₂ at 25°C.
- (b) The value of the solubility-product constant, K_{sp} , for $Zn(OH)_2$ is 7.7×10^{-17} at $25^{\circ}C$.
 - (i) Calculate the solubility (in moles per liter) of Zn(OH)₂ at 25°C in a solution with a pH of 9.35.
 - (ii) At 25°C, 50.0 milliliters of 0.100-molar Zn(NO₃)₂ is mixed with 50.0 milliliters of 0.300-molar NaOH. Calculate the molar concentration of Zn²⁺(aq) in the resulting solution once equilibrium has been established. Assume that volumes are additive.

2004

1. Answer the following questions relating to the solubilities of two silver compounds, Ag₂CrO₄ and Ag₃PO₄.

Silver chromate dissociates in water according to the equation shown below.

$$Ag_2CrO_4(s) \implies 2 Ag^+(aq) + CrO_4^{2-}(aq) \qquad K_{sp} = 2.6 \times 10^{-12} \text{ at } 25^{\circ}C$$

- (a) Write the equilibrium-constant expression for the dissolving of $Ag_2CrO_4(s)$.
- (b) Calculate the concentration, in mol L^{-1} , of Ag₊(*aq*) in a saturated solution of Ag₂CrO₄ at 25°C.
- (c) Calculate the maximum mass, in grams, of Ag₂CrO₄ that can dissolve in 100. mL of water at 25°C.
- (d) A 0.100 mol sample of solid AgNO₃ is added to a 1.00 L saturated solution of Ag₂CrO₄. Assuming no volume change, does $[CrO_4^{2^-}]$ increase, decrease, or remain the same? Justify your answer.

In a saturated solution of Ag₃PO₄ at 25°C, the concentration of Ag⁺(*aq*) is 5.3×10^{-5} *M*. The equilibrium constant expression for the dissolving of Ag₃PO₄ (*s*) in water is shown below.

$$K_{sp} = [Ag^+]^3 [PO_4^{-3}]$$

- (e) Write the balanced equation for the dissolving of Ag_3PO_4 in water.
- (f) Calculate the value of K_{sp} for Ag₃PO₄ at 25°C.
- (g) A 1.00 L sample of saturated Ag_3PO_4 solution is allowed to evaporate at 25°C to a final volume of 500. mL. What is $[Ag^+]$ in the solution? Justify your answer.