

CHEMISTRY HONORS UNIT 2 HOMEWORK PACKET (ELECTRONIC STRUCTURE & PERIODICITY)

Chemistry: Light Problems

<u>Directions</u>: Solve the following problems. Show proper set-up, work, and units for full credit. Box in your final answer.

- 1. A wave has a frequency of 22 Hz and a wavelength of 4.0 m. What is its velocity?
- 2. What is the frequency of a wave if its wavelength is 3.6×10^{-9} m and its velocity is 3.0×10^{8} m/s?
- 3. As you move across the continuous spectrum from red to violet, what happens to...
 - a. wavelength?
 - b. frequency?
- 4. A beam of microwaves has a frequency of 1.0 x 10^9 Hz. A radar beam has a frequency of 5 x 10^{11} Hz. Which type of radiation...
 - a. has the longer wavelength?
 - b. is nearer to visible light in the electromagnetic spectrum?
 - c. is closer to X-rays in frequency value?
- 5. A bright line spectrum contains a line with a wavelength of 518 nm. Determine...
 - a. the wavelength, in meters. (Hint: 1×10^9 nm = 1 m)
 - b. the frequency.
 - c. the energy.
 - d. the color of the line.

- 6. A photon has an energy of 4.00 x 10⁻¹⁹ J. Find... a. the frequency of the radiation. b. the wavelength of the radiation. c. the region of the electromagnetic spectrum that this radiation represents. 7. A photon of light has a wavelength of 3.20 x 10⁵ m. Find... a. the frequency of the radiation. b. the energy of the photon. c. the region of the electromagnetic spectrum that this radiation represents. 8. Determine the frequency of light with a wavelength of 4.257×10^{-7} cm. 9. How many minutes would it take a radio wave with a frequency of 7.25 x 10⁵ Hz to travel from Mars to Earth if the distance between the two planets is approximately 8.0 x 10⁷ km?
- 10. Cobalt-60 is an artificial radioisotope that is produced in a nuclear reactor for use as a gamma-ray source in the treatment of certain types of cancer. If the wavelength of the gamma radiation from a cobalt-60 source is 1.00 x 10⁻³ nm, calculate the energy of a photon of this radiation.

Electron Configuration

Name_____

Energy Level	E Sublevel	# of Orbitals in	# of e in	Total # of e		
n	(type of orbital)	Sublevel	Sublevel	in E level (2n²)		
1						
3		•				
2	and the second s					
3	A CONTRACTOR OF THE STATE OF TH					
٠						
4		b ₁				

	·
1,	There are four types of orbitals:
	s: shaped like a
, ;	An E level can contain onlys orbital, making up the "s sublevel"
23	p: shaped like
	An E level can contain p orbitals, making up the "p sublevel".
	d: shaped like double dumbbells
	An E level can contain d orbitals, making up the "d sublevel".
	f: too complex to draw or describe
	An E level can contain f orbitals, making up the "f sublevel".
2.	Each orbital can hold a maximum of electrons. Since both electrons
	have a charge, they What keeps them from
	flying apart?
	Each electron on its axis. One spins
	and the other spins When charged particles spin,
	they act like tiny magnets. Since the two electrons spin
	in directions, one acts like the north pole of a magnet
	and the other acts like the south pole. This makes the electrons
,	
•	
3.	Since each orbital can hold electrons:
	The "s sublevel" can hold electrons.
	The "p sublevel" can hold electrons.
	The "d sublevel" can hold electrons.
	The "f sublevel" can hold electrons.
	We use this notation to describe an electron:
· :	> 2 5 ▼
	mainlevel > 3p \ # of e- in
	mainlevel \$\rightarrow\$ \$\frac{1}{2}\$ # of e- in
1	How are electrons distributed within a sublevel?
	the state of the s

According to Hund's Rule, each _____ within a sublevel is

half-filled before any is _____.

	Disting Address	Name:Date:
--	-----------------	------------

Information: Energy Levels and Sublevels

As you know, in his solar system model Bohr proposed that electrons are located in energy levels. The current model of the atom isn't as simple as that, however.

<u>Sublevels</u> are located inside energy levels just like subdivisions are located inside cities. Each sublevel is given a name. Note the following table:

TABLE 1

Energy Level	Names of sublevels that exist in the energy level
1 st energy level	S
2 nd energy level	s and p
3 rd energy level	s, p, and d
4 th energy level	s, p, d, and f

Note that there is no such thing as a "d sublevel" inside of the 2^{nd} energy level because there are only s and p sublevels inside of the 2^{nd} energy level.

Critical Thinking Questions

- 1. How many sublevels exist in the 1st energy level?
- 2. How many sublevels exist in the 2nd energy level?
- 3. How many sublevels exist in the 3rd energy level?
- 4. How many sublevels would you expect to exist in the 5th energy level?
- 5. Does the 3f sublevel exist? (Note: the "3" stands for the 3rd energy level.)

Information: Orbitals

So for we have learned that inside energy levels there are different sublevels. Now we will look at orbitals. Orbitals are located inside sublevels just like streets are located inside subdivisions. Different sublevels have different numbers of orbitals.

TABLE 2

	# of Orbitals
Sublevel	Possible
S	1
Р	3
d	5
£	7
£	7

Here's an important fact: only two electrons can fit in each orbital. So, in an s orbital you can have a maximum of 2 electrons; in a d orbital you can have a maximum of 2 electrons; in any orbital there can only be two electrons.

Since a d <u>sublevel</u> has 5 orbitals (and each orbital can contain up to two electrons) then a d <u>sublevel</u> can contain 10 electrons (= 5×2). <u>Pay attention to the difference between "sublevel" and "orbital"</u>.

Critical Thinking Questions

- 6. How many orbitals are there in a p sublevel?
- 7. How many orbitals are there in a d sublevel?
- 8. a) How many total sublevels would be found in the entire 2nd energy level?
 - b) How many orbitals would be found in the entire 2nd energy level?
- 9. a) How many electrons can fit in an f sublevel?
 - b) How many electrons can fit in an f orbital?
- 10. How many electrons can fit in a d orbital? in a p orbital? in any kind of orbital?
- 11. In your own words, what is the difference between a sublevel and an orbital?
- 12. How many electrons can fit in each of the following energy levels:

2nd energy level =

3rd energy level =

4th energy level =

<u>Information</u>: Representing the Most Probable Location of an Electron

The following is an "address" for an electron—a sort of shorthand notation. The diagram below represents an electron located in an orbital inside of the p sublevel in the 3rd energy level.

EXAMPLE #1:

3p ⁺ -- -

Some important facts about the above diagram:

- The arrow represents an electron.
- The upward direction means that the electron is spinning clockwise.
- "3p" means that the electron is in the p sublevel of the 3rd energy level.
- Each blank represents an orbital. Since there are three orbitals in a p sublevel, there are also
 three blanks written beside the p.
- In the diagram, the electron is in the first of the three p orbitals.

Here's another example:

EXAMPLE #2:

Critical Thinking Questions

- 13. In example #2, why are there 5 lines drawn next to the d?
- 14. In example #2, what does it mean to have the arrow pointing down?
- 15. Write the notation for an electron in a 2s orbital spinning clockwise.
- 16. Write the notation for an electron in the first energy level spinning clockwise.
- 17. What is wrong with the following notation? You should find two things wrong.

20----

18. Write the notation for an electron in the 4th energy level in an f sublevel spinning clockwise.

Electron Configuration Practice Worksheet

In the space below, write the unabbreviated electron configurations of the following elements:

	*	
1)	sodium	
2)	iron	
3)	bromine	
4)	barium	
5)	neptunium	· ·
in th	ae space below, nents:	write the abbreviated electron configurations of the following
6)	cobalt	
7)	silver	
8)	tellurium	
9)	radium	
10)	lawrencium	
Dete	rmine what els	ments are denoted by the following electron configurations:
11)	1s ² 2s ² 2p ⁶ 3s ²	² 3p⁴
12)	,	² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ¹
13)	[Kr] 5s ² 4d ¹⁰ 5	p ³
14)	[Xe] 6s ² 4f ¹⁴ 5	d _e
Dete	mine which of	the following electron configurations are not valid:
		3p ⁶ 4s ² 4d ¹⁰ 4p ⁵
		3d ⁵
		p ⁵
0)	IXel	

Note: The electron configurations in this worksheet assume that lanthanum (La) is the first element in the 4f block and that actinium (Ac) is the first element in the 5f block. If your periodic table doesn't agree with this, your answers for elements near the f-orbitals may be slightly different.

- 1) sodium
- 2) iron
- 3) bromine
- 4) barium
- 5) neptunium
- 6) cobalt
- 7) silver
- 8) tellurium
- 9) radium
- 10) lawrencium
- 11) $1s^22s^22p^63s^23p^4$
- 12) $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^1$
- 13) [Kr] $5s^24d^{10}5p^3$
- 14) [Xe] 6s²4f¹⁴5d⁶
- 15) [Rn] 7s²5f¹¹
- 16) $1s^22s^22p^63s^23p^64s^24d^{10}4p^5$
- 17) $1s^22s^22p^63s^33d^5$
- 18) [Ra] 7s²5^a
- 19) [Kr] 5s²4d¹⁰5p⁵
- 20) [Xe]

An orbital diagram uses boxes with arrows to represent the electrons in an atom. Each box in an orbital diagram represents an orbital. Orbitals have a capacity of two electrons. Arrows are drawn inside the boxes to represent electrons. Two electrons in the same orbital must have opposite spin so the arrows are drawn pointing in opposite directions. The following is an orbital diagram for selenium.

Two electrons in the same orbital Electrons fill the lowest Each orbital is half-filled available energy levels first. must have opposite spin. before being completely filled. In writing an orbital diagram the first step is to determine the Boxes drawn for various sublevels number of electrons. Normally this is the same as the number of s sublevel: 1 orbital protons, which is known as the atomic number. Next the boxes are 3 orbitals drawn for the orbitals. Arrows are drawn in the boxes starting from p sublevel: the lowest energy sublevel and working up. This is known as the 5 orbitals d sublevel: Aufbau rule. The Pauli exclusion principle requires that electrons 7 orbitals f sublevel: in the same orbital have opposite spin. Hund's rule states that orbitals in a given sublevel are half-filled before they are completely filled. This violates Hund's rule. One electron should be distributed to each of the 3p orbitals before doubly filling any. Write the name and symbol for the elements with the following orbital diagrams. ↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓ There is an error with each of the following orbital diagrams. Explain the error. 7. [Ar] $\frac{1}{4s}$ $\frac{1}{3d}$ $\frac{1}{4p}$ Write orbital diagrams for the following. You may abbreviate using a noble gas.

9. hydrogen

10. boron

11. sodium

12. krypton

13. chromium

14. phosphorus 15. carbon

cobalt 16.

17. platinum

18. plutonium

19. oxygen

20. potassium

Electron Configurations Na

ame 🔄		7.5	70	19 m	3.		12.	120	_ '
	,								
Date					_ P	er_	<u></u>		

PART A - ORBITAL DIAGRAMS & LONGHAND ELECTRON CONFIGURATION

Use the patterns within the periodic table to draw orbital diagrams and write longhand electron configurations for the following atoms.

	Symbol	# e*	Orbital Diagram and Longhand Electron Configuration
1.	Mg		
2.	Р		
-	V		
4.	Ge		
5.	Kr		
5.	0		

	Symbol	# e^	Shorthand Electron Configuration
7.	Ca		
8.	Pb		
9.	F		
10	Ü		

PART B - RULES OF ELECTRON CONFIGURATIONS

Which of the following "rules" is being violated in each electron configuration below? Explain your answer for each. *Hund's Rule, Pauli Exclusion Principle, Aufbau Principle*

$$11 \begin{vmatrix} \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \\ 1s & 2s & 2p \end{vmatrix}$$

$$12 \begin{vmatrix} \frac{1}{1} & \frac{1}{1} &$$

M125 12

ame: our:	_	Date:			:				

Chemistry: Electron Configurations

Write out the electron configuration for each of the following elements.

- 1. H
- 2. Li
- 3. Na
- 4. K
- 5. Rb
- 6. Be
- 7. Mg
- 8. Ca
- 9. Sr
- 10. C
- 11. 0
- 12. S
- 13. F
- 14. CI
- 15. Br
- 16. I
- 17. He
- 18. Ne
- 19. Ar
- 20. Kr
- 21. Xe
- 22. Fe

Looking over your electron configurations, are there any elements above that have similar **valence** electron configurations to those of other elements? If so, list below the elements that are similar (in terms of valence electrons) and state the similarity for each of the groups.

Name:		
Hour:	Date:	

Chemistry: Orbital Diagrams

Using forward slashes (/) and backslashes (\), construct the orbital diagram for each of the following elements.

	Orbitals											
Element	1s	2s	2р	3s	3р	4 s	3d	4p	5s	4d	5p	
Н												
Li												
Na												
К												
Rb						,						
Be												
Mg												
Ca												
Sr												
С												
0												
S												
F									H			
CI												
Br												
1												
		\vdash										
He		H										
Ne												
Ar												
Kr												
Xe												
Fe												

	Name:	
Chemistry: Vocabulary – The Periodic Table and Period	Hour:	Date:
<u>Directions</u> : Define each of the following terms. For some of the terms, y than your textbook, such as a dictionary or encyclopedia.		consult sources other
1. actinides		
2. alkali metals		
3. alkaline-earth metals		
4. anion		
5. atomic radius		
6. cation		
7. coinage metals		
8. electronegativity		
9. <i>group</i>		
10. <i>halogens</i>		

11. *ion*

14. <i>I</i> a	lanthanides		
15. <i>m</i>	main block elements		
16. <i>m</i>	metal		
17. <i>n</i>	metalloid (semimetal)		
18. <i>n</i>	noble gases		
19. <i>n</i>	nonmetal		
20. p	period		
21. p	periodic law		
22. sl	shielding effect		
23. <i>tr</i> a	transition elements		

12. ionic radius

13. ionization energy

			Nan	ne:		
Chem	istry: <i>The Periodic</i>	Table and Periodic		r:	Date:	
		following questions. You		te sentence	9S.	
			,			
1.	Who first published the	classification of the elen	nents that is the basis	of our perio	odic table today?	
2.	By what property did M	endeleev arrange the ele	ements?			
3.	By what property did M	oseley suggest that the p	periodic table be arran	ged?		
4.	What is the periodic lav	v? *				
5.	What is a period? How	many are there in the pe	riodic table?			
O.	vinacio a period: How	many are there in the pe	nodic table:			
6.	What is a group (also c	alled a family)? How mar	ny are there in the peri	odic table?		
		u Ngarina ng Kabilatan				
7.	State the number of va	State the number of valence electrons in an atom of:				
	a. sulfur	b. calcium	c. chlorine		d. arsenic	
8.	Give the names and chemical symbols for the elements that correspond to these atomic numbers:					
	a. 10	b. 18	c. 36		d. 90	
9.	List, by number, both the period and group of each of these elements.					
		Symbol	Period	Group		
	a. beryllium	Be				
	b. iron	Fe				
	c. lead	Pb				
10.	Which of the following pairs of elements belong to the same period?					
	a. Na and Cl	b. Na and Li	c. Na and Cu	d. Na	and Ne	
11.	Which of the following pairs of elements belong to the same group?					
	a. H and He	b. Li and Be	c. C and Pb	d. Ga	and Ge	
12.	How does an element's	period number relate to	the number of the ene	ergy level of	f its valence electrons?	

13.	What are the transition elements?			
14.	In what type of orbitals are the actinide and lanthanide electrons found?			
15.	Would you expect strontium to be, chemically, more similar to calcium or rubidium and WHY?			
16.	What are the coinage elements?			
17.	What is the heaviest noble gas? What is the heaviest alkaline earth metal?			
18.	In going from top to bottom of any group, each element has more occupied energy level(s) than the element above it.			
19.	What are the Group 1 elements called?			
20.	What are the Group 2 elements called?			
21.	What are the Group 17 elements called?			
22.	What are the Group 18 elements called?			
23.	What is the name given to the group of elements that have the following valence shell electron configurations?			
	a. s^2 b. s^2p^6 c. s^2p^5 d. s^1			
24.	List the three lightest members of the noble gases.			
25.	List all of the alkali metals.			
26.	Which alkali metal belongs to the sixth period?			
27.	Which halogen belongs to the fourth period?			
28.	What element is in the fifth period and the eleventh group?			
29.	Why do all the members of a group have similar properties?			
30.	What do we mean by the "atomic radius?"			
31.	Within a group, what happens to the atomic radius as you go down the column?			

32. Explain your answer to Question 31: Why does the atomic radius change? What is coulombic attraction? 33. 34. Within a period, what happens to the atomic radius as the atomic number increases? 35. Explain your answer to Question 34: Why does the atomic radius change? 36. What two factors determine the strength of coulombic attraction? 37. What is the shielding effect? 38. How are the shielding effect and the size of the atomic radius related? 39. How are neutral atoms converted into cations? How are neutral atoms converted into anions? Nonmetals usually form what type of ions? 40. Metals usually form what type of ions? 41. What is ionization energy? 42. What is the equation that illustrates ionization energy, and what does each symbol represent? 43. What do we mean by the first, second, and third ionization energies for a particular atom? 44. Why does each successive ionization require more energy than the previous one? 45. What is the general trend of ionization energy as you go from left to right across the periodic table?

What is the general trend of ionization energy as you go down a group on the periodic table?

46.

47.	Which of these ele	ements has the I	highest first	ionization e	energy: Sn,	As, or S?
-----	--------------------	------------------	---------------	--------------	-------------	-----------

- 48. When an atom becomes an anion, what happens to its radius?
- 49. When an atom becomes a cation, what happens to its radius?
- 50. For each of the following pairs, circle the atom or ion having the larger radius.

e.
$$S^{2-}$$
 or O^{2-}

51. For each of the following pairs, identify the smaller ion.

a.
$$K^{1+}$$
 or Ca^{2+}

c.
$$C^{4+}$$
 or C^{4-}

e.
$$O^{2-}$$
 or F^{1-}

d.
$$S^{2-}$$
 or F^{1-}

- 52. Where, generally, are the metals located on the periodic table?
- 53. Where, generally, are the nonmetals located on the periodic table?
- 54. A. List some properties of metals.
 - B. List some properties of nonmetals.
 - C. What kinds of properties do metalloids have?
- 55. What is electronegativity?
- 56. Who determined the scale of electronegativity most often used today?
- 57. List the following atoms in order of increasing electronegativity: O, Al, Ca
- 58. List the following atoms in order of decreasing electronegativity: Cl, K, Cu
- 59. What is the general trend of electronegativity as you go down the periodic table?
- 60. What is the general trend of electronegativity as you go left to right across the periodic table?